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Abstract. This expository paper requires little previous background in rig-

orous probability theory. In order to provide a comprehensive understanding,

we begin with the foundations of probability theory, building to a proof of
Kolmogorov’s Zero-One Law. Following the proof, we examine applications of

this law in other areas of mathematics, namely percolation theory and random

power series.
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1. Introduction

The central focus of this paper is Kolmogorov’s Zero-One Law. This theorem
states that given a sequence of independent events A1, A2, . . . in a probability space
(Ω,F ,P), events residing in the tail field of this sequence occur with a probability
of either zero or one.

After proving Kolmogorov’s Zero-One Law, some applications are explored. Firstly,
we examine the presence of an infinite connected component in randomly generated
subgraphs of Z2, the coordinate plane. We find that depending on the percolation
parameter p, an infinite connected component occurs with probability zero or one.
Following this, we state that the critical parameter is p = 1

2 , i.e. an infinite com-

ponent occurs with probability one if p ≥ 1
2 , and zero if p < 1

2 .
After stating an alternative formulation of Kolmogorov’s Zero-One Law using

random variables, we examine the convergence of random power series, i.e. series
of the form

∞∑
n=0

Xn(ω)zn
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where X0, X1, X2, . . . are random variables. We find that the radius of convergence
of such a series is constant with probability one.

2. Preliminaries

Definition 2.1. Given a set Ω, a semialgebra J of Ω is a collection of subsets of
Ω with the following properties:

• Ω, ∅ ∈ J ;
• J is closed under finite intersection; and
• The complement of any element in J can be expressed as the finite disjoint

union of elements of J .

Explicitly, the last bullet says that for any A ∈ J , there exists n ∈ N and
B1, . . . , Bn ∈ J such that

(2.2) AC = B1 ∪̇ B2 ∪̇ · · · ∪̇ Bn,

where we use ∪̇ to denote the union of two disjoint sets.

Definition 2.3. Given a set Ω, an algebra or field of sets C is a collection of subsets
of Ω with the following properties:

• Ω, ∅ ∈ C; and
• C is closed under finite unions, intersections, and complements.

Thus, given any finite number of subsets A1, A2, . . . , An ∈ C,

(2.4) AC1 ∈ C;

(2.5)

n⋃
i=1

Ai = A1 ∪A2 ∪ · · · ∪An ∈ C;

(2.6)

n⋂
i=1

Ai = A1 ∩A2 ∩ · · · ∩An ∈ C.

Example 2.7. Algebras are often quite useful, but in many cases closure under
finite operations is lacking. Let Ω = N, and consider the collection of all finite
subsets of N and their complements. This is an algebra. Yet restriction to finitely
many operations precludes important subsets of N like 2N and 2N + 1, the sets of
even and odd natural numbers, respectively, from being in the algebra.

Any algebra over a set Ω may still be lacking many important subsets of Ω as
above. What we need to avoid these types of problems is closure under countably
many operations.

Definition 2.8. Given a set Ω, a σ-algebra (pronounced “sigma algebra”) F is a
collection of subsets of Ω with the following properties:

• Ω, ∅ ∈ F ; and
• F is closed under countable unions, intersections, and complements.

Thus, given countably many elements A1, A2, A3, . . . ∈ F ,

(2.9) AC1 ∈ F
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(2.10)

∞⋃
i=1

Ai = A1 ∪A2 ∪ · · · ∈ F ;

(2.11)

∞⋂
i=1

Ai = A1 ∩A2 ∩ · · · ∈ F .

Clearly, all σ-algebras are algebras and all algebras are semialgebras. The most
important and powerful of these is the σ-algebra, which will be necessary for us
to consider the concept of infinity, with respect to probability. It is important to
note that none of these collections above will necessarily contain all subsets of Ω,
although 2Ω is an example of a σ-algebra.

Given A a collection of subsets of Ω, not necessarily closed under any operations,
we may talk about the smallest σ-algebra containing A. We denote this by σ(A)
and say it is the “σ-algebra generated by A” [1].

For any collection of subsets A, σ(A) is well-defined. We define it as the inter-
section of all σ-algebras containing A; this is indeed a σ-algebra, as intersections of
σ-algebras with other σ-algebras yields a σ-algebra. As 2Ω contains A and is itself a
σ-algebra, we have existence. For uniqueness, suppose σ(A) = S1 and σ(A) = S2,
with S1 6= S2. As S1 is the intersection of all σ-algebras containing A, and S2

contains A , we have S1 ⊆ S2. By the same logic, S2 ⊆ S1, so clearly S1 = S2.
For an example, consider the definition below.

Definition 2.12. The Borel subsets of R, which we shall denote B, are defined as
follows. If we let

(2.13) I = {open intervals of R}
then B = σ(I).

So the sets that can be formed by countably many set operations on open sets
are the Borel sets (this includes closed sets, singleton elements, half open or half
closed sets, etc.). Just about any subset of R one could name is a Borel set [1]. For
example, Q is Borel. Because the rational numbers are countable, we can write:

(2.14) Q =
⋃
q∈Q

[(−∞, q) ∪ (q,∞)]C .

There are some further facts that we will make use of in proofs that follow.

Theorem 2.15. (De Morgan’s Laws) Given a collection of subsets {Aα}α∈I we
have the following properties of intersections, unions, and complements:

(2.16)

(⋃
α

Aα

)C
=
⋂
α

ACα ;

(2.17)

(⋂
α

Aα

)C
=
⋃
α

ACα .

Proof. We examine 2.16 first. Suppose x ∈ (
⋃
αAα)C . This is equivalent to saying

x is in none of the sets. So it must reside in the complement of each set, i.e.
x ∈

⋂
αA

C
α . This shows (

⋃
αAα)C ⊆

⋂
αA

C
α . For the other direction, suppose

x ∈
⋂
αA

C
α . This is equivalent to saying x is in none of the individual sets. So clearly

x is not in the union of these sets, i.e. x ∈ (
⋃
αAα)C . So

⋂
αA

C
α ⊆ (

⋃
αAα)C .
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Having shown both directions, we have
⋂
αA

C
α = (

⋃
αAα)C . The proof for 2.17 is

virtually identical. �

3. Probability Essentials

Definition 3.1. A probability triple or probability space is a triple (Ω,F ,P) con-
sisting of:

• The sample space Ω;
• F , a σ-algebra of Ω; and
• The probability measure P, a function P : F → [0, 1], such that P(∅) = 0,

P(Ω) = 1, and P is countably additive on disjoint sets, i.e.

(3.2) P

( ∞⋃
i=1

Ai

)
= P(A1) + P(A2) + · · · =

∞∑
i=1

P(Ai)

where all the Ai are disjoint.

The elements of F are those subsets of Ω which have well-defined probabilities.
We call these events, and for any A ∈ F , we speak of P(A) as the “probability of
event A” [1].

Remark. The nature of the probability measure matches our intuition from ev-
eryday life. Consider a spinner on a circle with four different colored and equally
sized quadrants: red, blue, green, and yellow. The probability of landing on each
is 1

4 . The fact that each of the colors is disjoint (i.e. non-overlapping) means that
we ought to add the probabilities when we combine them, e.g. P(red or yellow) =
P(red) + P(yellow) = 1

4 + 1
4 = 1

2 . This makes perfect sense, because we are now
asking for the probability that we land on exactly half of the circle, namely the half
consisting of the red and yellow quadrants.

A situation such as this makes clear also why P(Ω) = 1. In this situation, Ω
is the whole circle. Every time we spin, the spinner must land somewhere on the
circle. Evaluating P(Ω) is equivalent then to asking the question: “what is the
probability the spinner lands on the circle?” The probability must be one, and we
accordingly define all probability measures to have P(Ω) = 1.

Remark. The reader may ask: is the structure of the σ-algebra really necessary
for the definition of the probability measure? We attempt to motivate this by
showing how the definition falls apart if we try to construct uncountable additivity.
Let Ω = [0, 1], and let P be Lebesgue measure on [0, 1]; for the unfamiliar reader,
Lebesgue measure gives the “length” of any interval, i.e. P((a, b)) = P((a, b]) =
P([a, b)) = P([a, b]) = b− a. Now consider

(3.3)
⋃

x∈[0,1]

{x} = [0, 1] = Ω.

We have an uncountable disjoint union of the singleton sets. Let’s try to apply
additivity over disjoint sets to this union.

(3.4) P

( ⋃
x∈[0,1]

{x}
)

=
∑
x∈[0,1]

P({x}) =
∑
x∈[0,1]

0 = 0
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because the singleton sets have Lebesgue measure zero. Yet we should have by
definition of the probability measure that

(3.5) P

( ⋃
x∈[0,1]

{x}
)

= P(Ω) = 1,

a clear contradiction. An example such as this shows that we cannot permit un-
countable additivity and still have our probability measure behave as one would
expect it to. As we still desire countable additivity, the next best option, the
σ-algebra is the most logical thing on which to define the probability measure [1].

Remark. The reader may ask also: what is the necessity of defining other σ-
algebras when we have the power set? Could we not always define P : 2Ω → [0, 1]?
The answer is that in many instances the probability measure P may not be well-
defined on every subset of Ω. For example, Rosenthal spends all of chapter one
proving that on the sample space [0, 1] there does not exist a probability measure
defined on 2[0,1] that gives the length of every interval [1]. This is because certain
subsets of [0, 1], if carefully constructed, lead to contradictions in the probability
measure (e.g. Vitali sets), and cannot be assigned a “length” in any reasonable
sense [3] [2].

There are a few useful properties of the probability measure we point out for use
in future proofs.

Lemma 3.6. The probability measure demonstrates monotonicity, i.e. if A ⊆ B,
then P(A) ≤ P(B).

Proof. Let A ⊆ B. Then B = A ∪̇ (B ∩ AC). These two sets are disjoint, so by
countable additivity it follows that

(3.7) P(B) = P(A) + P(B ∩AC) ≥ P(A).

�

Although countable additivity applies only to disjoint sets, we also have countable
subadditivity of P over all sets, defined as below.

Lemma 3.8. Given A1, A2, . . . ∈ F , not necessarily disjoint, we always have:

(3.9) P

( ∞⋃
i=1

Ai

)
≤
∞∑
i=1

P(Ai).

Proof. Indeed, we rewrite the Ai as disjoint sets as follows:

(3.10) P(A1 ∪A2 ∪A3 ∪ · · ·) = P(A1 ∪̇ (A2 ∩AC1 ) ∪̇ (A3 ∩AC2 ∩AC1 ) ∪̇ · · ·).
From here we may apply countable additivity to get

(3.11) = P(A1)+P(A2∩AC1 )+P(A3∩AC2 ∩AC1 )+· · · ≤ P(A1)+P(A2)+P(A3) · · ·
where we use the fact that An ∩ACn−1 ∩ · · · ∩AC1 ⊆ An and apply monotonicity in
the last inequality. �

Remark. By definition we immediately have 1 = P(Ω) = P(A ∪̇ AC) = P(A) +
P(AC), implying that for any event A, P(AC) = 1−P(A).

How often do probability triples exist? Its criteria may seem difficult to meet,
but in fact we can often construct probability triples quite easily with the help of
the following immense theorem.
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Theorem 3.12. (The Extension Theorem) Let S be a semialgebra of subsets of Ω,
and P a function P : S → [0, 1] such that P(∅) = 0 and P(Ω) = 1. Suppose P
satisfies finite additivity over disjoint sets, i.e.

(3.13) P(A1 ∪̇ · · · ∪̇ At) =

t∑
i=1

P(Ai) for disjoint A1, . . . , At ∈ S,

t⋃
i=1

Ai ∈ S,

and that P also satisfies countable subadditivity, i.e.

(3.14) P

( ∞⋃
i=1

Ai

)
≤
∞∑
i=1

P(Ai) for countably many Ai ∈ S if the union is in S.

Then there exists a σ-algebra M and a probability measure P∗ defined on M,
such that S ⊆ M,P∗(A) = P(A) for any A ∈ S, and (Ω,M,P∗) is a valid proba-
bility triple.

Though we omit the proof because of its length, one should not neglect the
importance of this theorem. Given only a semialgebra and a probability measure
satisfying finite additivity and countable subadditivity, we are guaranteed a valid
probability triple. We include a statement of the theorem so that the phrase “given
a probability triple (Ω,F ,P)”, which we shall use often from here onward, carries
some meaning.

Definition 3.15. Given a probability triple (Ω,F ,P), a collection of events (pos-
sibly infinite) {Eα}α∈A is independent if for all n ∈ N, and all possible finite
combinations α1, α2, . . . , αn, we have:

(3.16) P(Eα1
∩ Eα2

∩ · · · ∩ Eαn
) = P(Eα1

)P(Eα2
) · · ·P(Eαn

).

If our collection contains only two events A and B, a situation perhaps more
familiar, then clearly independence tells us that P(A∩B) = P(A)P(B). Note that
pairwise independence is not sufficient; we need every possible finite subcollection
to be independent for the entire collection to be independent [1].

Example 3.17. To see that pairwise independence does not imply independence,
consider one roll of a fair 9-sided die. Let A be the event we roll a 1, 2 or 3; B be
the event we roll a 3, 4, or 5; C be the event we roll a 5, 6, or 1. Then we have the
following:

(3.18) P(A) = P(B) = P(C) =
1

3
;

(3.19) P(A ∩B) = P ({3}) =
1

9
= P(A)P(B);

(3.20) P(B ∩ C) = P ({5}) =
1

9
= P(B)P(C);

(3.21) P(A ∩ C) = P ({1}) =
1

9
= P(A)P(C).

In other words, we have A, B, and C pairwise independent. This tells us that
given any one of the three, we are just as likely to have either of the other two.
But clearly P(A ∩ B ∩ C) = 0 6= 1

27 = P(A)P(B)P(C). So the events are not
independent. If we have A and B, for example, then we do not have C by necessity.
The occurrence of C is clearly dependent on A and B; the dependencies of these
events among each other demonstrate that they are not independent.
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4. Moving Towards Infinity

Definition 4.1. Given a probability triple (Ω,F ,P) and infinitely many events
A1, A2, A3, . . . ∈ F , define a new event {An i.o.} ∈ F , read “An infinitely often,”
as

(4.2) {An i.o.} =

∞⋂
n=1

∞⋃
k=n

Ak,

and another event {An a.a.} ∈ F , read “An almost always”, as

(4.3) {An a.a} =

∞⋃
n=1

∞⋂
k=n

Ak.

Regarding each An as a subset of the set Ω, “An infinitely often” is the set of all
ω ∈ Ω which are in infinitely many of the An. “An almost always” is more complex
to interpret. If ω ∈ Ω is in {An a.a.}, then there exists mω ∈ N such that

(4.4) ∀ n > mω, ω ∈ An, i.e. ω ∈
∞⋂

i=mω+1

Ai.

So ω ∈ {An a.a.} implies that ω is in all but a finite number of the An. Colloquially,
then, we say {An a.a.} is the event that all but finitely many of the events An occur.

Lastly, we should note that since A1, A2, . . . ∈ F , the closure of the σ-algebra
under countable operations ensures that {An i.o.}, {An a.a.} ∈ F , and hence are
events in their own right with well defined probabilities [1].

Example 4.5. Consider a countable number of fair die rolls with the standard six
sided die. Let our events be S1, S2, S3, . . . , where Si is the event that the ith roll is
a 6. In this situation, {Sn i.o.} is the event that we roll infinitely many 6’s. Then
{Sn a.a.} is the event that we roll a 6 all but finitely many times, i.e. only a finite
number of 1’s, 2’s, 3’s, 4’s, or 5’s. An example like this should make clear that
“almost always” is stronger than “infinitely often.” The former implies the latter,
but not vice versa, e.g. we could easily have both infinitely many 6’s and 5’s in our
result.

Theorem 4.6. (The Borel-Cantelli Lemma) Let A1, A2, . . . ∈ F .

(i) If
∑
n

P(An) <∞, then P({An i.o.}) = 0.

(ii) If
∑
n

P(An) =∞, {An}∞n=1 independent, then P({An i.o.}) = 1.

Proof. Let’s start with i). Note that for all m ∈ N, we have:

P({An i.o.}) = P

( ∞⋂
m=1

∞⋃
k=m

Ak

)
≤ P

( ∞⋃
k=m

Ak

)
by monotonicity. Then it follows from countable subadditivity of the probability
measure that

P

( ∞⋃
k=m

Ak

)
≤
∞∑
k=m

P(Ak).
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Convergence of this last series implies that the terms in the summation go to zero.
Hence for all ε > 0, there exists m ∈ N such that

∑∞
k=m P(Ak) < ε. It follows that

P(An i.o.) < ε for any ε, hence it is 0.

Now for ii). Because P({An i.o.}) = 1−P({An i.o.}C), it suffices to show that
P({An i.o.}C) = 0. By De Morgan’s Laws in the preliminaries we have:

P({An i.o.}C) = P

(( ∞⋂
n=1

∞⋃
k=n

Ak

)C)
= P

( ∞⋃
n=1

( ∞⋃
k=n

Ak

)C)
= P

( ∞⋃
n=1

∞⋂
k=n

ACk

)
.

Then we can write by countable subadditivity that

P

( ∞⋃
n=1

∞⋂
k=n

ACk

)
≤
∞∑
n=1

P

( ∞⋂
k=n

ACk

)
.

So we need only show that for all n ∈ N, P(
⋂∞
k=nA

C
k ) = 0. By monotonicity we

have that for all m ∈ N,

P

( ∞⋂
k=n

ACk

)
≤ P

( n+m⋂
k=n

ACk

)
=

n+m∏
i=1

P(ACk ),

where the second step follows by definition of independent events, and the fact that
the complements of independent events are also independent. Now using the fact
that for all x ∈ R, 1− x ≤ e−x, and letting P(ACk ) = 1−P(Ak), we have:

n+m∏
i=1

1−P(Ak) ≤
n+m∏
i=1

e−P(Ak) = e−
∑n+m

i=1 P(Ak).

Because the sum diverges to infinity, the last term goes to zero as m → ∞. It
follows that P(

⋂∞
k=nA

C
k )) < ε for any ε, so it is 0. �

The lemma tells us that if the events {An} are independent, then P({An i.o.})
is either 0 or 1 and nothing else. The reader should consider this lemma a very
weak version of a zero-one law [1].

Example 4.7. Consider an infinite heavily weighted coin tossing. Let our in-
dependent events be H1, H2, H3, . . . , where Hi is the event that the ith coin is
heads. Suppose also that our coins are heavily weighted against flipping heads,
with P(Hn) = 1

n (e.g. the millionth coin has only a one in a million chance at
being heads). The Borel-Cantelli Lemma tells us nevertheless that we will still flip
infinitely many heads, i.e. P({Hn i.o.}) = 1. This follows from the divergence of
the harmonic series, since

∑
n P(Hn) =

∑
n

1
n . Such a result is not at all obvious

without the lemma.
For an even less obvious result, consider an infinite coin tossing heavily weighted

in favor of heads. Again let our events be H1, H2, H3, . . . , and suppose that for
all n ∈ N, P(Hn) = ( 99

100 )n. In other words, there is a 99% chance the first coin
is heads, a 98.01% chance that the second one is heads, etc. In this scenario,
P({Hn i.o}) = 0; we cannot have infinitely many heads. This follows from the fact
that

(4.8)
∑
n

P(Hn) =
∑
n

(
99

100

)n
=

99
100

1− 99
100

= 99 <∞
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because this forms a geometric series with common ratio r = 99
100 . This result is

entirely unintuitive, but revealing of the great power of the lemma.

Example 4.9. As a rather amusing example, consider the event that a monkey
typing at random would produce Shakespeare’s Hamlet in an infinite amount of
time. Let’s ignore case sensitivity, but otherwise we still expect our monkey to type
not only all letters, but spaces, quotes, commas, periods, and other punctuation
correctly. To be safe, let’s assume there are 45 possible characters. Moreover, let’s
give the monkey an old fashioned typewriter with no delete key so we need not
worry about backspaces. Hamlet has some finite number of characters N , with N
large. Now consider the infinite string produced by our monkey typing at random.
We assume for simplicity that each character has the same probability of being hit
and that hits are independent. We seek a substring that is the text of Hamlet. If
we pick an arbitrary starting point in the infinite string the probability that this is
the beginning of a full text of Hamlet is:

(4.10) P(H) =

(
1

45

)N
= ε > 0.

Now consider a sequence of events S1, SN+1, S2N+1, . . . , where Si is the event that
the ith character is the start of a full text of Hamlet. These events are independent
because they specify the start of a Hamlet-length substring of our infinite string
with no overlap. Clearly then P(Si) = ε always. It follows that

(4.11)

∞∑
i=1

P(S2i+1) =

∞∑
i=1

ε =∞.

So by Borel-Cantelli, P({Si i.o.}) = 1. In other words, our monkey will not only
type Hamlet, but will do so infinitely many times.

Definition 4.12. Given a sequence of events A1, A2, . . . ∈ F , we define their tail
field as

(4.13) τ =

∞⋂
n=1

σ(An, An+1, An+2, . . . ).

The tail field is a σ-algebra whose members we call tail events.
The tail field has some interesting attributes in the case that the Ai are inde-

pendent. Then any T ∈ τ cannot depend on any particular event Ai, or on any
finite number of events An1

, An2
, . . . , Anm

, ni ∈ N. If nmax is the highest index,
then none of these are in σ(Anmax+1, Anmax+2, . . . ) and hence are not in the tail
field by Lemma 5.1 (see below), so bear no relation whatsoever to T . All tail events
clearly depend strongly on the tail of our sequence of events; events of this nature
depend on infinitely many Ai. As an easy example, {An i.o.}, {An a.a.} ∈ τ . While
the Borel-Cantelli Lemma can only be applied to the events stated, Kolmogorov’s
Zero-One Law is more powerful in that it applies to any tail event [1].

5. Kolmogorov’s Zero-One Law

First a few lemmas on independence that we’ll need to make use of.

Lemma 5.1. Let B1, B2, B3 . . . be independent. Then σ(B1, . . . , Bi−1, Bi+1, . . . )
and σ(Bi) are independent classes, i.e. for all X ∈ σ(B1, . . . , Bi−1, Bi+1, . . . ),
P(Bi ∩X) = P(Bi)P(X).
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The proof, which we omit, is quite lengthy and involves some technical results of
the extension theorem, but the result should not be surprising. If we have events
that we already know are independent from Bi, then the lemma simply says that
performing countably many set operations on these yields a result that is also
independent from Bi.

We use this lemma to help prove another.

Lemma 5.2. Let A1, A2, . . . , B1, B2, . . . be a collection of independent events.

(i) If X ∈ σ(A1, A2, . . . ), then X,B1, B2, . . . are independent.

(ii) The σ-algebras σ(A1, A2, . . . ) and σ(B1, B2, . . . ) are independent classes, i.e.
if X ∈ σ(A1, A2, . . . ), Y ∈ σ(B1, B2, . . . ), then P(X ∩ Y ) = P(X)P(Y ).

Proof. Consider some arbitrary finite set of indices, i1, i2, . . . , in, and let F = Bi1 ∩
Bi2 ∩ · · · ∩ Bin . Then clearly F,A1, A2, . . . are independent because all of the
B’s were included in the original independent set. By Lemma 5.1, for any X ∈
σ(A1, A2, . . . ), we have F,X independent, and P(F ∩ X) = P(F )P(X). Because
F is arbitrary and for any set of indices this is true, it follows that X,B1, B2, . . . is
an independent collection, because the definition of independence simply requires
that any finite subcollection is independent for the entire set to be. This proves
(i). Applying Lemma 5.1 once more, and picking any Y ∈ σ(B1, B2, . . . ), it follows
that X and Y are independent and P(X ∩ Y ) = P(X)P(Y ). This proves (ii). �

Finally, we are ready to prove Kolmogorov’s Zero-One Law.

Theorem 5.3. (Kolmogorov’s Zero-One Law) Given a probability triple (Ω,F ,P)
and a sequence of independent events A1, A2, . . . ∈ F with tail field τ , if T ∈ τ ,
then P(T ) ∈ {0, 1}.

Proof. We have an independent collection A1, A2, A3, . . . , and our tail event T ∈
τ . Then for any n ∈ N, as T ∈ σ(An+1, An+2, . . . ), we have T,A1, A2, . . . , An
independent by Lemma 5.2 (i). It follows that T,A1, A2, . . . is an independent
collection. If we pick any finite subcollection with indices m1,m2, . . .mk, with
mmax the largest of these, we need only let n > mmax to automatically have T
independent from Am1

, . . . , Amk
by above.

So, with T,A1, A2, . . . independent, by Lemma 5.1 we then have T and S
independent for any S ∈ σ(A1, A2, . . . ). But we also know by definition that
T ∈ τ ⊆ σ(A1, A2, . . . ), i.e. T is independent of itself! It follows that

P(T ) = P(T ∩ T ) = P(T )P(T ) = P(T )2,

so P(T ) = 0 or P(T ) = 1. �

Example 5.4. Let an be a fixed sequence of real numbers. Consider the space
Ω = {±1}∞. Consider a sign sequence ωn ∈ Ω, such that P({ωi = 1}) = 1

2

and P({ωi = −1}) = 1
2 , where ωi is the ith component of the infinite sequence

ωn. Then the event that
∑
n ωnan converges is a tail event. If the sum converges,

then changing the signs of finitely many terms will yield a sum that must also
converge; and similarly if it diverges, changing the signs of finitely many terms will
still yield a divergent series. As no finite number of sign switches can change the
convergence, then the event that the series converges resides in the tail field. Hence,
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by Kolmogorov’s Zero-One Law,

(5.5) P

(∑
n

ωnan converges

)
∈ {0, 1}.

6. Application to Percolation Theory

We assume the reader has some background in graph theory. Percolation of
graphs examines the connectedness of randomly generated graphs.

Definition 6.1. Given a graph G = (V,E), a subgraph of G, denoted G′, is any
graph G′ = (V ′, E′) where E′ ⊆ E and V ′ ⊆ V .

Bond percolation examines randomly generated subgraphs where V ′ = V . In
other words, only edges are lost while all vertices remain. For the remainder of this
paper we will exclusively consider subgraphs of this sort [6].

Definition 6.2. Let G = (V,E). In constructing a random subgraph G′, we
define the bond percolation parameter p ∈ [0, 1] as the probability of edge retention,
independent of edge. That is, for all e ∈ E,

• P(e ∈ E′) = p
• P(e /∈ E′) = 1− p.

We say retained edges are open and removed edges closed. It will be convenient
to denote open edges with 1’s and closed edges with 0’s [4].

Consider bond percolation on Z2 = (V,E), the coordinate plane.

Question 6.3. Given a randomly generated subgraph, what is the probability that
there exists an infinite cluster, i.e. an infinite connected component of non-repeating
open edges?

We wish to apply Kolmogorov’s Zero-One Law, but we first need a valid proba-
bility triple to work in.

With Z2 = (V,E), first fix an ordering of the edge set E, i.e. E = {e1, e2, . . . }.
Let Ω =

∏
e∈E{0, 1} (where

∏
is the Cartesian product), the space of all infinite

binary sequences. Then every ω ∈ Ω, which we shall call a configuration, specifies
a particular subgraph of Z2 [7]. Letting ωi denote the ith component of ω, for a
given configuration we know edge ei is open if ωi = 1, and closed if ωi = 0.

Now we need a σ-algebra of subsets of Ω. For arbitrary n ∈ N, let f ∈ Fn2 be a
vector that specifies finitely many 0’s and 1’s, and let fi denote the ith component,
1 ≤ i ≤ n. Now, for all n ∈ N, we consider the cylinder sets of Ω, i.e. the sets of
the form:

(6.4) Sf = {ω ∈ Ω : ωi = fi}.
In words, a cylinder set specifies the states of the first n edges with a fixed

combination of 0’s and 1’s; to reside in the set, ω must be match these on the first
n edges, but can have random assignment thereafter. Our σ-algebra, denoted F ,
will then be generated by all possible cylinder sets, i.e. over all n ∈ N and f ∈ Fn2
[5].

We need a valid probability measure defined on F . Given a bond percolation
parameter p ∈ [0, 1], we first define q : {0, 1} → [0, 1] (note the difference between
set and interval notation) with the following properties:



12 DECLAN MCNAMARA

• q({0, 1}) = 1;
• q(∅) = 0;
• q(1) = p;
• q(0) = 1− p.

This is a valid probability measure on {0, 1}. Though beyond the scope of this
paper, it is true that the product of probability measures is indeed a probability
measure. This is called a product measure. So on our space Ω =

∏
e∈E{0, 1}, we

define our probability measure P =
∏
e∈E q [4].

It suffices to show that the event C∞ := {there exists an infinite cluster} re-
sides in the tail field in order to apply Kolmogorov’s Zero-One Law. We already
know that the presence of individual edges is independent, the only other necessary
condition. Similar to above, we define σn as the the σ-algebra generated by the
cylinder sets about f ∈ Fn2 . The only difference is that this time we pick specific n,
instead of considering all n ∈ N together as we did for F . For any n, there are 2n

cylinder sets because there are 2n options for f ∈ Fn2 , and σn will be the σ-algebra
generated by these 2n sets.

Then our tail field is

τ =

∞⋂
n=1

σn.

C∞ is in the tail field. The existence of an infinite cluster could not possibly
depend on any finite number of edges; indeed, we can ignore any finite number of
them and this will not affect the existence of an infinite cluster. So it follows that
for any n, C∞ ∈ σn+1, where n edges are fixed. This is equivalent to saying C∞ ∈ τ
[6].

Then by Kolmogorov’s Zero-One Law, Pp(C∞) ∈ {0, 1}. Kolmogorov taunts us
though, in that his law both gives and withholds much information. We know the
probability is either 0 or 1, but by what means are we to determine which? This
question is often much more difficult to answer than one would think. It is beyond
the scope of this paper to show, but there is a solution [6].

Theorem 6.5. On the lattice Z2, the critical percolation parameter is pc = 1
2 and

we have the following:

• if p < 1
2 , then P(C∞) = 0;

• if p ≥ 1
2 , then P(C∞) = 1.

7. Application to Random Power Series

Definition 7.1. Given a space Ω equipped with a σ-algebra F of Ω, we say a
function f : Ω→ R is measurable if for every Borel set B ∈ B,

(7.2) f−1(B) ∈ F .

Definition 7.3. A random variable on a probability triple (Ω,F ,P) is a function
that is measurable on the probability space.

In other words, for every Borel set B, the event {ω : X(ω) ∈ B} ∈ F and hence
has a well-defined probability.

Note that σ(X), where X is a random variable, denotes the smallest σ-algebra
of subsets of Ω such that X is measurable defined on this domain [8]. Then we
have:
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Theorem 7.4. (Kolmogorov’s Zero-One Law) Let X1, X2, X3, . . . be a sequence of
independent random variables. Then any event A such that

(7.5) A ∈
∞⋂
i=1

σ(Xi, Xi+1, Xi+2, . . . )

has probability 0 or 1.

Proof. The proof is nearly identical to that of the other formulation [9]. �

We consider randomly generated power series constructed via random variables.

Definition 7.6. Given a probability triple (Ω,F ,P) and a sequence of independent
random variables X0, X1, X2, . . . , with each Xi : Ω→ R, then we define the random
power series

(7.7) f(z, w) =

∞∑
i=0

Xi(ω)zi

for z ∈ C, ω ∈ Ω [10].

We will examine the convergence of random power series, and show that the
radius of convergence is constant for all ω ∈ Ω by Kolmogorov’s Zero-One Law.

Definition 7.8. Given a sequence of real numbers {an}, define

(7.9) lim sup an = inf
n≥0
{sup{am : m ≥ n}}.

We say this is the limit superior of the sequence [11].
It is a fact from analysis that for any complex power series of the form

(7.10) f(z) =

∞∑
i=0

an(z − c)n,

with ai, c ∈ C, the radius of convergence of the series is

(7.11) r =
1

lim sup n
√
|an|

.

Regarding our random power series, fix ω ∈ Ω. Then f(z, ω) is a complex power
series as above with c = 0 [12]. If we define a new function

(7.12) r(ω) := radius of convergence of f(z, ω),

it follows that

(7.13) r(ω) =
1

lim sup n
√
|Xn(ω)|

.

Lemma 7.14. For any sequence of random variables X0, X1, X2, . . . , lim supXn

is a random variable.

Proof. It suffices to show that {ω : lim supXn ≤ x} ∈ F for all x ∈ R. First note
that for all m ∈ N,

(7.15) {ω : sup
n≥m

Xn(ω) ≤ x} =
⋂
n≥m

{ω : Xn(ω) ≤ x} ∈ F ,
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where the last inclusion follows by the closure of σ-algebras under countable opera-
tions and the fact that each Xi is itself a random variable defined on the probability
space (Ω,F ,P). Similarly we have

(7.16) {ω : inf
n
Xn(ω) ≤ x} =

⋃
n

{ω : Xn(ω) ≤ x} ∈ F .

It follows then that

(7.17) {ω : lim supXn(ω) ≤ x} =
⋃
n

⋂
n≥m

{ω : Xn(ω) ≤ x} ∈ F

and hence lim supXn is a random variable defined on the probability space in its
own right [13]. �

Now we show the radius of convergence is constant.

Theorem 7.18. Given a sequence of independent random variables X1, X2, . . .
with tail field τ , any random variable Y that is τ -measurable is constant with prob-
ability one [14].

Proof. Given

(7.19) τ =

∞⋂
i=1

σ(Xi, Xi+1, Xi+2, . . . ),

and Y measurable with respect to τ , we have

(7.20) {ω : Y (ω) ∈ B} ∈ τ
for all Borel sets B. In considering intervals of the form (−∞, c], it follows that

(7.21) P(Y ≤ c) ∈ {0, 1}
for all c ∈ R. If Y is well defined (i.e. not ±∞ with probability one), then as we
increase c there is some point where the probability defined above “jumps” from 0
to 1. Define this point as

(7.22) x0 := inf {c : P(Y ≤ c) = 1}
Then we have that P(Y = x0) = 1 [14].

We will illustrate this precisely. Define

(7.23) x1 := smallest c such that P(Y > c) = 0.

We have three cases: x0 < x1, x0 > x1, x0 = x1. Suppose x0 < x1. Then there
exists ε > 0 such that

(7.24) x0 < x1 − ε < x1.

Then we have P(Y > x1−ε) = 1, because it cannot be 0 by definition of x1. Yet by
definition of x0, we must also have P (Y ≤ x1− ε) = 1. This is a clear contradiction
as it implies

(7.25) P(Ω) = P(Y > x1 − ε) + P (Y ≤ x1 − ε) = 1 + 1 = 2.

Now suppose x0 > x1. As P(Y > x1) = 0, by complementation we must have
P(Y ≤ x1) = 1, an immediate contradiction that x0 was the infimum of such
numbers. So x0 = x1. We immediately have P(Y < x0) = 0; now we have
P(Y > x0) = P(Y > x1) = 0 by definition. We get:

(7.26) P(Ω) = P(Y < x0) + P(Y > x0) + P(Y = x0) = 1.
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As the first two terms equal 0, this implies P(Y = x0) = 1, i.e. Y is constant with
probability one. The only case missing, where Y = ±∞ with probability one, is
trivial. �

As {Xn} was an arbitrary sequence of random variables, we can simply define

a new sequence of random variables as { n
√
|Xn|}. From this and the fact that

lim sup is a τ -measurable random variable, it follows that our original formula for
the radius of convergence

(7.27) r(ω) =
1

lim sup n
√
|Xn(ω)|

is constant with probability 1 for all ω ∈ Ω [10].
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