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Figure 2.2 Exponential hazard functions with mean 1 (solid) and mean 2 {(dotted).

24 THE WEIBULL AND GUMBEL DISTRIBUTIONS

A Weibull random variable (after W. Weibull (1939, 1951)) is one with survivor
function

S(t)=exp{ —(t/a)}, (23)

for 1 >0 and where o and 5 are positive parameters, « being a scale parameter
and n being a shape parameter. Note that when n=1, we obtain an exponential
distribution with A=1/z

The Weibull hazard function is

h(t)y=na """ 1

This is DFR for <1, constant for n=1 (exponential) and IFR for y>1. In
particular, for 1 <# <2, the hazard function increases slower than linearly; for
n =2 the hazard function is linear; and for » > 2 the hazard increases faster than
linearly. A selection of Weibull hazard functions is shown in Figure 2.3.

The Weibull density is

f@)y=na™""" " exp{—(t/2)"}, (24)
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for t>0. The mean and variance are given by aI'(y "'+ 1) and «*{I'(2n ' + 1)~
[T(n"'+1)]?}, where T is the gamma function

F(x)szu“le"“du, (2.5)

see, for example, Abramowitz and Stegun (1972, Chapter 6). A Fortran
program for computing equation (2.5) is given in Griffiths and Hill (1985, pp.
243-6), which is based on an earlier program of Pike and Hill (1966). When 7
is large (greater than 5, say), the mean and variance are approximately o and
1.64x%/n? respectively. The shape of the density depends on #. Some Weibull
densities are shown in Figure 2.4.

The Weibull distribution is probably the most widely used distribution in
reliability analysis. It has been found to provide a reasonable model for
lifetimes of many types of unit, such as vacuum tubes, ball bearings and
composite materials. A possible explanation for its appropriateness rests on its
being an extreme value distribution; see Galambos (1978). Moreover, the closed
form of the Weibull survivor function and the wide variety of shapes exhibited
by Weibull density functions make it a particularly convenient generalization
of the exponential distribution.

The Gumbel (or extreme-value, or Gompertz) distribution has survivor function

S(x)=exp{—exp[(x—p)/o]} (2.6)

for —oo<x<aoo, where p is a location parameter and ¢>0 is a scale
parameter. This distribution also arises as one of the possible limiting distributions
of minima, see Galambos (1978), and has exponentially increasing failure rate.
It is sometimes used as a lifetime distribution even though it allows negative
values with positive probability. More commonly, however, the Gumbel
distribution arises as the distribution of log T. This is equivalent to assuming
that T has a Weibull distribution. The relationship between the Gumbel and
Weibull parameters is u=log « and o= 1/n.
The Gumbel density function is

flx)=0"" exp{(x—p)/o}S(x) 2.7

for —oo<x<oo, and has the same shape for all parameters. Note that the
mean and variance of a Gumbel random variable are y—yo and (n2/6)6?
respectively, where y=0.5772... is Euler’s constant, and the distribution is
negatively skewed. The density and hazard functions for a Gumbel distribution
with u=0 and o =1 are shown in Figures 2.5 and 2.6 respectively.
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In practice H(t) and H(r) are usually close. i
At a specified value t* the standard error of H(t*) and H(t*) may be

approximated, using (2.21) and the delta method, by
H dj 1/2
se{H(t*)} =se{H(t*)} = ‘”—-———~——} .
(e} =se(AE") {Z Py iy

As in sections 2.9 and 2.10 a plot of S(¢) versus ¢t can be informative. This
may be constructed for all ¢ values, giving a step function, or by plotting only
the points (a;, 1 —p;) for j=1,2,...,k where

p;=1-4{S(a;)+5S(a;+0)}.

Note that §(aj+0)=§(aj+1) for j=1,2,...,k—1. Similar remarks apply to
graphical representation of H(t) and H(t).

In the special case of data that are assumed to be Weibull distributed, a plot
of the points (log a;, log{ —log(1 —p;)}) for j=1,2,..., k should be approximately
linear if the Weibull model is appropriate. Similarly a plot of the points
(loga;,® '(p;)) should be approximately linear if a lognormal model is
appropriate. For both plots rough parameter estimates may be obtained as in

section 2.9.

Example 2.3
In an experiment to gain information on the strength of a certain type of

braided cord after weathering, the strengths of 48 pieces of cord that had been
weathered for a specified length of time were investigated. The intention was
to obtain the strengths of all 48 pieces of cord. However, seven pieces were
damaged during the course of the experiment, thus yielding right-censored
strength-values. The strengths of the remaining 41 pieces were satisfactorily
observed. Table 2.1 shows the data in coded units from this experiment.

Table 2.1 Strengths in coded units of 48 pieces of weathered braided cord

Uncensored observations
363 417 439 499 501 508 519 521 523 52.3

$24 526 527 531 536 536 539 539 541 546
548 548 551 554 559 560 561 565 569 571
71 573 577 578 581 589 590 591 596 604

60.7

Right-censored observations
268 296 334 350 400 419 425
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Tvgo aspects were of particular interest. First, the experimenter felt that it
§v3a§ m;)portant tha.t even after weathering the cord-strength should be above
in the cod?d units. Thus, an estimate of S(53) is required. Secondly, previous
expgnencg with related stfength-testing experiments indicated that a Weibull
r‘r;vo. t<)=.lurmghdt lbfa appropriate here. Thus, a check on the adequacy of the
eibull model is needed, toget i i i i
T aprommoss ogether with estimation of the Weibull parameters
© TI;eze qgestion? will be addressed further in Chapter 3, but for now we use
¢ estimate for the data to obtain $(53) and to investi i
model graphily (53) and to investigate the Weibull
Tab.lé 2.2 ghows the first few lines of the calculation of § and related
quantities for illustration. We see that, from equation (2.20) and Table 2.2

S(53)=0.6849.

Table 2.2 Sample calculations of S and related quantities for

Example 2.3
] 4 n; d; (n;—d;)/n; §(aj+0) dj/{n,-(nj—d,-)}
0 —w 48 0 1.0000 1.0000 0.0000
1 363 44 1 0.9773 0.9773 0.0005
2 417 42 1 0.9762 0.9540 0.0006
3 439 39 1 0.9744 0.9295 0.0007
4 499 38 1 0.9737 0.9051 0.0007
5 501 37 1 0.9730 0.8806 0.0008
6 508 36 1 0.9722 0.8562 0.0008
7 519 35 i 09714 0.8317 0.0008
8 521 34 1 0.9706 0.8072 0.0009
9 523 33 2 0.9394 0.7583 0.0020
10 524 31 1 0.9677 0.7338 0.0011
11 526 30 1 0.9667 0.7094 0.0011
12 527 29 1 0.9655 0.6849 0.0012
13 531 28 1 0.9643 0.6605 0.0013

The approximate standard error of $(53) is, from equation (2.21) and Table 2.2

se{5(53)} =0.6849{0.0112}
=0.0725.

Thus an approximate 95% confidence interval for 5(33) is

0.6849 +1.96 x 0.0725.
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That is,

(0.54,0.83).

Note that the four smallest censored values have been in effect ignored in this
analysis as they were censored before the first uncensored observation.

Figure 2.17 shows a plot of (log a;, log{ —log(1 —p;)}). The bulk of this plot
seems to be linear. However, the points corresponding to the three lowest
strengths lie considerably above the apparent line. Whilst these points have
great visual impact because they are somewhat isolated from the rest of the
plot, they are also the least reliable since they correspond to the extreme lower
tail where the data are somewhat sparse. In this particular example the extreme
points are made even less reliable in view of the relatively large amount of
censoring at low strength-levels. The overall lack of curvature in the plot apart
from the three isolated points suggests that a Weibull model should not be
ruled out. If we assume a Weibull model for the moment, fitting a line by eye
to the plot (ignoring the isolated points) gives slope 18.5 and intercept —75.
Thus, rough estimates of n and o are 18.5 and 57.6 respectively.

Figure 2.18 shows a plot of (logaj, ®~'(p;)). Here there is some slight
indication of curvature in the plot, even after ignoring the three isolated points.
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Figure 2.17 Weibull plot for the cord strength data.
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Figure 2.18 Lognormal plot for the cord strength data.

Her}ce a lognormal model appears to be somewhat less satisfactory than the
Weibull model.

In this section we have discussed non-parametric estimation, that is estimation
whigh does not require specification of a particular parametric model, of the
survivor function and the cumulative hazard function in the presence of
right-censored observations. A related approach for estimating quantiles, such
as the median and the quartiles, in the presence of right-censoring is given in
Kimber (1990).

When data contain left-censored or interval-censored observations, results
analogous to the PL estimator of the survivor function are available. However,
they are considerably more complex than the PL estimator and they have not
been used much in the reliability context. One reason for this is the relative
rarity of the occurrence of left-censored observations in reliability. In addition
un?ess the intervals are very wide, interval-censoring is generally relativel};
unimportant in practical terms. In fact all observations of continuous variables,
such as time and strength, are interval-censored since data are only recorded
to a finite number of decimal places. However, this aspect is usually ignored in
analy'scs. _For further information on non-parametric estimation of the survivor
function in the presence of left-censored or interval-censored observations the
reader is referred to Turnbull (1974, 1976).

_
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Statistical methods for single
samples

31 INTRODUCTION

Towards the end of Chapter 2 some simple statistical methods were introduced.
These methods are such that they may be used before embarking on a more formal
statistical analysis. In this chapter we first discuss methods for obtaining statistical
inferences in the reliability context. In section 3.2 the method of maximum
likelihood estimation is discussed in general terms. Some particular illustrations are
given in section 3.3. Likelihood-based methods for hypothesis testing and
confidence regions are then introduced in section 3.4. We then make some general
remarks on likelihood-based methods in section 3.5. Finally we discuss in section
3.6 some methods that may be applied after fitting a parametric model, such as a
Weibull distribution, in order to assess the adequacy of the fitted model.

32 MAXIMUM LIKELIHOOD ESTIMATION:
GENERALITIES

In this section we give details of a general method of estimation of parameters,
called maximum likelihood estimation (ML). To fix ideas suppose we have a
sample of observations t,,1,,...,t, from the population of interest. For the
moment we assume that none of the observations is censored. In the reliability
context it is reasonable to assume that the t; are lifetimes. Suppose also that
they can be regarded as observations with common density function
f(t;6,,0,,...,0,) where the form of f is known but where the parameters
01,05, ..., 0, are unknown. So, for example, we may perhaps assume that the
observations are Weibull-distributed with unknown # and a. For brevity we
shall denote dependence on 6,,0,,...,0,, by 6, so that the common density
may be written f(t; ). Then the likelihood of the observations is defined by

LO)=[] f(t; 6).

i=1
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More generally, suppose that some of the observations are right-censored.
Then we can split the observation numbers 1,2,..., ninto two disjoint sets, one,
U say, corresponding to observations that are uncensored, the other, C say,
corresponding to right-censored observations. Then the likelihood in this case
is defined by

L(9)={Hf(t.-;9)}{ﬂ S(ti;H)}. (3.1)

iel ieC

Thus, for a right-censored observation the density has been replaced by the
survivor function. In a similar manner for a left-censored observation the
density should be replaced by the distribution function. For an interval-
censored observation the density should be replaced by the distribution
function evaluated at the upper end-point of the interval minus the distribution
function evaluated at the lower end-point of the interval, thus yielding the
probability of occurrence of a lifetime within the interval.

It is almost always more convenient to work with the log-likelihood, (6)
defined by

[(8)=1log L(6).

The maximum likelihood estimates (MLEs) 6,,6,, ..., 0, of 6,,6,,...,6, are
those values that maximize the likelihood, or equivalently, the log-likelihood.
Alternatively, and more usually, the MLEs may be found by solving the
likelihood equations

(71__0 =1,2
89,-“ (j=1,2,....,m).

Both approaches will usually involve numerical methods such as Newton or
quasi-Newton algorithms. For most of the problems covered in this book the
necessary numerical methods will be available in a package such as GLIM (see
also Aitkin and Clayton, 1980), in subroutine libraries such as NAG and
IMSL, and in the literature; see Press et al. (1986). In most simple situations
(e.g. fitting a two parameter Weibull distribution) direct maximization of L or
['will yield identical results to solving the likelihood equations. However, there
exist situations where one or other of the two methods is unsatisfactory; see
section 3.5.

Suppose that §=(8,,0,, ..., 0,,) has been calculated. We may be interested in
some function of the unknown parameters such as

¢=g(0)
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where g is a specified one-to-one function. Then the MLE of ¢ is ¢ defined by

¢=g(0).

For example, one is often interested in estimating a quantile of the lifetime
distribution; that is, estimating

q(p)=q(p; 9),

satisfying

Pr{T 2q(p)} =S{a(p)} =p,

where 0<p <1 is specified. Hence the MLE of the quantile is just g(p; 6).
Furthermore, from asymptotic theory the precision of the MLEs may in

many cases be estimated in a routine way. Consider the mxm observed
information matrix J with entries

(J=12,....mk=1,2,.. m) (3.2)

evaluated at 01 Then the inverse of J is the estimated variance-covariance
matrix of 6,,6,,...,0,. That is, if V:AJ‘1 has entries vy, then vy is the
estimated covariance between 6; and 6. In particular an estimate for the
standard error of 0; (j=1,2,...,m) is just v}/,

In addition, if ¢ =g(0), then the standard error of é may be estimated by

) mom 172
93(‘/)):{2 Z (‘79/Ia()j)((?g/(mk)l’jk} > (3.3)

Jj=1 k=1

where the partial derivatives are evaluated at 8. This procedure is often referred
to as the delta method. In the special case where m=1, so that 6 is a scalar
parameter, equation (3.3) reduces to

- d
se() = Jd—g i (3.4)

where dg/d0 is evaluated at 0. It is this equation (3.4) that was used in section
2.9 to obtain equation (2.16) from equation (2.14) with g(§)= —log 8. A more
detailed discussion of the delta method is given in the Appendix at the end of
this book.

Whilst construction of standard errors on the basis of equations (3.2), (3.3)
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and (3.4) is usually straightforward, the method does have certain drawbacks.
These are discussed more fully in section 3.4.

Of course, ML is not the only estimation method available. We have already
seen some ad hoc methods in sections 2.9 to 2.11. However, from the point of
view of the user, ML has several major advantages. First its generality ensures
that most statistical problems of estimation likely to arise in the reliability
context may be dealt with using ML. Many other methods, such as those based
on linear functions of order statistics (see David, 1981), are very simple to use
in some univariate problems but are difficult or impossible to generalize to
more complex situations. In addition, the generality of ML is an advantage
from a computational point of view since, if desired, essentially the same
program may be used to obtain MLEs whatever the context. Secondly, the
functional invariance property of MLEs ensures that, having calculated 6, one
may obtain the MLE of g(f) immediately without having to restart the
estimation process. Thirdly, approximate standard errors of MLEs may be
found routinely by inversion of the observed information matrix.

From the theoretical point of view ML also has some properties to
recommend it. Under mild regularity conditions MLEs are consistent, asym-
ptotically Normal and asymptotically efficient. Roughly speaking these results
mean that if the whole population is observed ML will give exactly the right
answer, and that in large samples a MLE is approximately Normally distributed,
approximately unbiased and with the smallest attainable variance. For technical
details the reader should consult Cox and Hinkley (1974).

33 MAXIMUM LIKELIHOOD ESTIMATION:
ILLUSTRATIONS

In this section we illustrate the calculation of MLEs in certain special cases.
Throughout we shall assume that we have a single sample of observations,
possibly right-censored, and that these observations are identically distributed.
The case in which the parameters of interest depend on some explanatory or
regressor variables will be covered in Chapters 4 and 5.

We assume that in the sample of possibly right-censored lifetimes t,, 5, ..., ¢,
there are r uncensored observations and n—r right-censored observations. We
also define x;=log t; (i=1,2,...,n).

Exponential distribution
The log-likelihood is, from equations (2.2) and (3.1),

I(Ay=rlogi—4 ) t.

i=1
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Hence

f= —. (3.5)
PR
i=1
Notice that the denominator is the total time on test(TTT). Also,
-d r 16
di2 (36)

Hence the estimated standard error of £ is }f/\/;. Notice that it is necessary
that r>0, that is, at least one lifetime must be uncensored.

As special cases, if all the observations are uncensored then 4 is just the
reciprocal of the sample mean, whereas if only the r smallest lifetimes
t) <t <--- <ty have been observed (simple Type II censoring) then

/ r
/l:r/ { Y t(i)‘*’(”—")l(r)} (3.7
/ i=1

The reciprocal of the right-hand side in (3.7) is sometimes known as the
one-sided Winsorized mean.

Weibull distribution
The log-likelihood for a Weibull sample is, from equations (2.3), (2.4) and (3.1)

I, 0)=r logn—ryloga+@n~1) Y logt;—a™" ) tI.
u i=1

Alternatively, letting x;=log t; and using a Gumbel formulation of the problem,
we obtain from equations (2.6), (2.7) and (3.1)

n

(i, 0)=—rloga+3 (xi/a)—(ru/o)— 3 exp{(x;—u)/o}.

i=1
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Thus
Z r+i exp{( )a}
o= — x;—p)/o
op i=1 g
ol “
ot o= —ro—) xitrut }, exp{lxi—u)/o}(xi— k).
d u i=1
Hence
L 1 ¢ .
y=alog{; Y exp(x‘-/o)} (3.8)
i=1
and
1 n N n A
- Y xi+6— 3, x exp(x/6)/ Y exp(x;/6)=0 (3.9)
u i=1 fi=1

Note that equation (3.9) does not involve /. So the problem of obtaining ji and &
reduces simply to finding &, after which i may be found directly from equation
(3.8). The solution to equation (3.9) must be found numerically. Routines for
solving such non-linear equations are readily available in subroutine libraries such
as NAG and IMSL. See also Press et al. (1986). A further possibility is to find two
values of o by trial and error which give opposite signs to the left side of equation
(3.9). These may be used as starting values in a repeated bisection scheme. This can
easily be programmed on even a very small computer.
The second derivatives of -are

-3 1 iy /
o =52 exp(—p/o) .; exp(x;/a)
mﬁzl——rwti exp(—p/o)o— )iex (x/0)+—Lex (—u/o) ) x; exp(x;/0)
ouds ot o’ pLmH : i=1 P o3 P = |
3 —r xp 2rp 1<
502 =;z*—2>; Stost3 Z exp(xi/0)(x;— ) {20 + x; — 4}

These expressions simplify considerably when they are evaluated at (i, 0)=
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Example 3.2
Consider again the data first encountered in Example 2.1. We shall initially be
concerned with fitting a parametric model to these data using for illustration
first the Weibull distribution and then the lognormal distribution. For convenience
we shall work with the logged data which amounts to fitting a Gumbel
distribution and a Normal distribution.

For the Gumbel distribution we used a simple iterative scheme via the NAG
library to obtain /i =4.405, 6 =0.476 with estimated variance-covariance matrix

0.01104 —0.00257
VGumbc! = .

(4, 6) to give
—02 r
our ¢

=0 & [x—j X —fi
o577 =0l75)

Example 3.1
Consider again the data first encountered in Example 2.2. For illustration
purposes we now fit an exponential model using ML. Here n=13, r=10 and

—-0.00257 0.00554

For the Normal distribution 4 and ¢ are respectively the sample mean and
n sample standard deviation (with divisor n rather than n—1), giving i=4.150
> 1;=23.05 and 6=0.522 and

i=1

Hence, using equations (3.5) and (3.6) for the exponential model the MLE for

/. is £=10/23.05=0.434, with standard error 4/,/r=0.137. Figure 3.1 shows a
plot of the log-likelihood as a function of A. Note that there is a single
maximum and that the function is rather skewed.

v (001184 0
Normal =\ 0 0.00592 )

Note that the parameters p and ¢ are used here as generic notations for

18 - location and scale parameters for log-lifetimes. There is no reason why, say, u
in the Gumbel formulation should be equal to y in the Normal formulation.

Suppose that various quantiles are of interest: the median, the lower 10%

point and the lower 1% point. For both the distributions fitted to the

20 4 log-lifetimes a quantile g(p) is of the form u-+oa(p), where a(p) is readily

available in standard statistical tables in the Normal case and where
a(p)=log(—log p) in the Gumbel case. Table 3.1 gives the numerical values of
a(p) for these two distributions for the required values of p, namely 0.5, 0.9 and
0.99. Using the given values of a(p) and the calculated MLEs we can obtain
the estimated quantiles for the log-lifetimes.

Log-likelihood

B

04 -

Table 3.1 Values of a(p) in the Normal and
Gumbel cases with p=0.5, 0.9, 0.99

P Gumbel a(p) Normal a(p)
0.5 ~0.367 0
09 —2.250 —1.282
T T T ] T T 0.99 —4.600 —2.326
0.2 0.4 0.6 0.8 1.0 1.2
Lambda

These may be transformed back to the original scale of measurement by
exponentiating. For example, the estimated median of the log-lifetimes in the

Gumbel case is given by 4.405—0.367 x 0.476 =4.230. Thus, in the Gumbel case

Figure 3.1 Log-likelihood for the aircraft components data with an exponential model.

The line /(4)-1.92 has been marked to show the 95 per cent confidence interval for A
based on W.
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the estimated median lifetime is exp(4.320) = 68.7 million revolutions. Table 3.2
shows the estimated quantiles for the lifetimes using the two parametric
formulations, together with standard errors using equation (3.3) with g(y, ¢)=
exp{u+oa(p)}.

Table 3.2 Quantile estimates (in millions of revolutions) for Weibull
and lognormal models, together with their standard errors

Quantile Weibull estimate  Lognormal estimate
Median 68.7 (8.0) 63.4 (6.9)
Lower 10% 28.1 (6.3) 32.5(4.8)
Lower 1% 9.2 (3.6) 18.1 (3.9)

Examination of Table 3.2 shows that, especially in the case of the most
extreme quantile, the two parametric models appear to give very different
estimates. This situation is not unusual.

34 TESTS AND CONFIDENCE REGIONS BASED ON
LIKELTHOOD

In Example 3.2 above we have seen that fitting different parametric models
may give very different estimates of a quantity of interest, such as a quantile.
Thus, some methods for choosing between parametric models are clearly
required. One approach is based on asymptotic properties of the likelihood
function. These properties also enable confidence intervals, or more generally,
confidence regions, to be calculated. First, we shall state the main general
results. Then we shall give some simple illustrations using the data already
discussed above.

We begin by supposing that the parametric model of interest depends on
parameters 0y,0,,...,0,. Suppose we are interested in testing or making
confidence statements about a subset 6 of these parameters. Label the
remaining parameters 6%, Of course, 6 may contain all of the m parameters,
so that 8 is empty. Let (6, 0®) be the joint MLE of (8, 8®). Let §®)(4,)
be the MLE of 8®) when 6V is fixed at some chosen value 8, say. Then two
likelihood-based methods for testing and constructing confidence regions are
as follows:

1. Let
W(B6Y) =W =2{1(0", 6®)~ 1[0, 6 (4,)]}.

Then under the null hypothesis V=64, W has approximately a chi-
squared distribution with m, degrees of freedom, where m, is the dimension
of 6“Y. Large values of W relative to x*(m,) supply evidence against the null
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hypothesis. The corresponding 1 —a confidence region for 64 s
{0 WO <y2(m)!,

where y2(m,) is the upper 100 percentage point of y%(m,).

2. Suppose V=V(@ G®) is the variance-covariance matrix for (0, 9By
evaluated at the MLE, as in section 3.3. Let V, =V (§“, ™) be the leading
submatrix of V corresponding to 6, That is, V, is the submatrix of V
corresponding to the estimated variance and covariance of 6. Then

WHOE") =0 05")T V(04— by

also has an approximate y*(m,) distribution under the null hypothesis
0“0 =04". The corresponding approximate 1 —« confidence region for 0'Y
1s given by

{8 W <yk(m,)}.

In the special case when 8 is a scalar this leads to a symmetric | —x
confidence interval

A(A 12
0+ Za12 vy

where z,,, is the upper 100x/2 percentage point of the standard Normal
distribution.

Both methods based on W and W* respectively are asymptotically equivalent,
and often give very similar results in practice. However, large discrepancies are
possible. In such cases the method based on W is preferable because the results
are invariant to reparametrization and the shape of the confidence region is
essentially decided by the data. Confidence regions based on W* are necessarily
elliptical in the parametrization used but will yield non-elliptical regions under
non-linear parameter transformations.

Example 3.1 (continued)

Having fitted an exponential model to the Mann and Fertig data, we shall now
calculate a 95% confidence interval for A. In the notation we used in the
general case 0= 1, 0® is redundant, and m,= 1. Here

1(4)=10 log 1 —23.054
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and

= —18.35.

v)

I
Hence
W(i)=2{—1835-10 log A+23.054}.

Thus, a 95% confidence interval for 4 based on W is {4: W(4) <3.84} since 3.84
is the upper 5% point of x*(1). In other words the required confidence interval
consists of all those values of A such that I(4) is within 1.92 of I(4). This interval
is marked on Figure 3.1 and corresponds to [0.22, 0.76]. Note that because of
the skewness of the log-likelihood, this interval is not centred at the MLE, 0.434.
A second method of calculating a 95% confidence interval for 4 is to use
Ww*. This gives limits 0.434 +1.96 x 0.137, where 1.96 is the upper 2.5% point
of the standard Normal distribution and 0.137 is the standard error of 1. Thus,
the interval based on W* is [0.17,0.70]. To show the dependence of W* on the
particular parametrization used, consider first reparametrizing the exponential
distribution in terms of a = 1/4. Then the MLE for a is &= 1/4=1/0.434=2.305.
Further, the standard error of 4 may be found using equation (3.4), giving

o
se(d) = —==0.729.
Jr

Hence, using W*, a 95% confidence interval for « is 2.305+ 1.96 x 0.729; that
is, [0.88, 3.73]. Hence the corresponding confidence interval for Ais [1/3.73, 1/0.88]
ie [0.27,1.14].

Thus we have three quite different confidence intervals for 4. As remarked
above, the interval based on W is generally to be preferred. In the special case
of the exponential distribution some exact distribution theory for the MLE is
available, which gives an exact 95% confidence interval for 4 as [0.21,0.74],
which is in good agreement with the w-based interval. The exact interval is
based upon the fact that 2rA/4 has a y*(2r) distribution. Note also that, had a
higher degree of confidence been required, the W*-based intervals would have
contained negative values, clearly a nonsense since 2 is necessarily positive. The
occurrence of negative values in a confidence interval for a necessarily positive
parameter is not possible when using the W-based method.

Example 3.2 (continued)

Earlier we fitted a Weibull model to the Lieblein and Zelen data. Could we
simplify the model and assume exponentiality? Equivalently, working with the
log-lifetimes, could we fix o =1 in the Gumbel model? We can take 0 =0,0® =y
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and m,=1 in the general framework and test the null hypothesis 6 =1.

We begin by considering the testing procedure based on W*, resuits for
whxch' are virtually immediate since we have already estimated the variance-
covariance matrix of (4, 6) as Vgumpe. Here

W*(1)=(0.476 — 1)*/0.00554 = 49.56.

Thls is highly significant as y?(1), indicating that an exponential model is
inappropriate. The result is so clear cut that it is probably not worth using the
more accurate test based on w in this particular numerical example. However
we shall do so in the interest of illustrating the method. Let fi, be the MLE 0%
u when o=1 is fixed. Then

Hp, 1)=Z Xi—rpy— i exp(x;— p)
u i=1

di "
= —r+ Y exp(x;— p).

i=1

Hence

fio =10g% é CXP(Xi)}-
In this example, f5=4.280, so that
lio, D)= z X;—Fflg—r=—2599.
Also, I(, 6)= — 18.24, giving

W(1)=2{I(1, 6)—(fio, 1)} = 15.50.

Again, this is highly significant as y?(1), leading to the same inference as that
basgd on W*, though the result is not so extreme. These results confirm the
earlier informal analysis discussed in Example 2.1.

Example 3.2 (continued) gives an illustration of testing nested hypotheses: the
model specified in the null hypothesis is a special case of the model spec}ﬁed
in the alternative. In the example the exponential model is a special case of the
Weibull model. Other examples include testing:



/
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1. an exponential model against a gamma model;

2. a Weibull model against a generalized gamma model; and

3, an exponential model with specified 4 against an exponential model with
unspecified 4.

This situation also arises commonly in regression analysis (see Chapters 4, 5,
and 6) in which the effect of an explanatory variable may be assessed by testing
that its coefficient is zero against the alternative that its coeflicient is non-zero.

What of the situation in which the hypotheses to be tested are non-nested? In
the context of this chapter, where we are concerned with methods for
univariate data, such a situation might arise in attempting to choose between
two separate families of distributions. For example, we might wish to choose
between a Weibull model and a lognormal model. Unfortunately the distribution
theory of section 3.4 no longer holds in general in this situation. Thus, one is
faced with the choice of either circumventing the problem or using theory
specifically designed for this particular problem. To fix ideas we stay with the
choice between Weibull and lognormal models.

An informal approach is to use data analytic methods such as those outlined
in sections 2.9 and 2.11. Another approach is to use goodness-of-fit tests for
the Weibull distribution and for the lognormal distribution. A major reference
in this field is D’Agostino and Stephens (1986). Yet another method is to fit a
more comprehensive model which contains the competing models. Possibilities
include the generalized gamma model and a mixture model, both discussed in
section 2.7. The hypotheses Weibull versus general alternative and lognormal
versus general alternative can then be tested. If only one of the competing
models can be rejected, then the other one is preferable. However, it is perfectly
possible that neither model can be rejected.

On the other hand we can face up squarely to the problem of testing separate
families of distributions. First, it must be decided which distribution should be
the null hypothesis. For example, if in the past similar data sets have been well
fitted by a Weibull model, then it is natural to take a Weibull distribution as
the null model. Pioneering work on this topic appears in Cox (1961, 1962b)
and Atkinson (1970). In the reliability context, see Dumonceaux and Antle
(1973) and Dumonceaux, Antle and Haas (1973). Typically, however, these
tests, which are based on maximized likelihoods, have rather low power unless
the sample size is large. When there is no natural null hypothesis a pragmatic
approach is to test Weibull versus lognormal and lognormal versus Weibull.
Once again, it is possible that neither distribution may be rejected in favour of
the other.

A different approach is to force a choice between competing models; see
Siswadi and Quesenberry (1982). This procedure, however, is not recommended,
especially if estimation of extreme quantiles is the aim of the analysis. To force
a choice between two or more models, which all fit a set of data about equally
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well in some overall sense, can lead to spuriously precise inferences about
extreme quantiles (see Examples 2.9 and 3.2).

Example 3.2 (continued®)

We have seen in Example 2.1 that on the basis of simple plots both the Weibull

and lognormal models appear to fit the data well. However, in Example 3.2 we

have seen that estimates of extreme quantiles for the two models are very different.
The maximized log-likelihoods are, working with the log-lifetimes,

Weibull -18.24
lognormal -17.27.

Thus, on the basis of maximized log-likelihood the lognormal model, as with
the plots, appears slightly better than the Weibull model. However, using the
results of Dumonceaux and Antle (1973), we cannot reject the Weibull model
in favour of the lognormal model or vice versa (using a 5% significance level
for each test). So we are still unable to choose between the two models on
statistical grounds.

If, for example, the median is of major concern, the choice between the
models is relatively unimportant. Alternatively, a non-parametric estimate
could be used; see sections 2.9 and 2.11 and Kimber (1990). However, if the
lower 1% quantile is of prime interest the non-parametric estimate is not an
option. If a choice must be made between models, then the more pessimistic
one is probably preferable (though this depends on the context of the analysis).
However, the real message is that the data alone are insufficient to make
satisfactory inferences about low quantiles. If quantifiable information is
available in addition to the sample data, then a Bayesian approach (see
Chapter 6) may be fruitful. Another way round the problem is to collect more
data so that satisfactory inferences about low quantiles may be drawn. The
approach of Smith and Weissman (1985) to estimation of the lower tail of a
distribution using only the smallest k ordered observations is another possibility,
thus side-stepping the problem of a fully parametric analysis.

35 REMARKS ON LIKELIHOOD-BASED METHODS

Likelihood-based procedures have been discussed above in relation to parametric
analyses of a single sample of data. These results generalize in a natural way
for more complex situations, such as when information on explanatory
variables is available as well as on lifetimes. These aspects are covered in later
chapters.

The asymptotic theory which yiclds the Normal and y* approximations used
above requires certain conditions on the likelihood functions to be satisfied.
The situation most relevant to reliability in which the regularity conditions on



64 Statistical methods for single samples

the likelihood do not hold occurs when a guarantee parameter must be
estimated. This can cause some problems, which have been addressed by many
authors including Smith and Naylor (1987) for the three-parameter Weibull
distribution, Eastham et al. (1987) and LaRiccia and Kindermann (1983) for
the three-parameter lognormal distribution, and Kappenman (1985) for three-
parameter Weibull, lognormal and gamma distributions. Cheng and Amin
(1983) also discuss problems with guarantee parameters.

For the relatively simple models discussed so far (e.g. exponential, Weibull,
Gumbel, Normal, lognormal) the regularity conditions on the likelihood do
hold. For some of these models (e.g. Normal and lognormal with no censoring)
closed form MLEs exist. However, in most likelihood-based analyses of
reliability data some iterative scheme is needed. Essentially one requires a
general program to handle the relevant data, together with a function maximizing
procedure, such as quasi-Newton methods in NAG or Press et al. (1986). To
fit a specific model all that is necessary is to ‘bolt on’ a subroutine to evaluate
the relevant log-likelihood function, and possibly the first and second derivatives
of the log-likelihood. For some models some numerical integration or
approximation may be needed (e.g. polygamma functions for the gamma
distribution, Normal survivor function for the Normal distribution with
censored observations). This may be programmed from the relevant mathematical
results (Abramowitz and Stegun, 1972) via available algorithms (Press et al.
1986; Griffiths and Hill, 1985) or using subroutines available in libraries such
as NAG and IMSL. In any event, it is worth trying several different initial
values to start an iterative scheme in order to check the stability of the
numerical results.

Of course, even when regularity conditions on the likelihood function are
satisfied, the asymptotic results may give poor approximations in small
samples or samples with heavy censoring. In cases of doubt one can either
search for exact distribution theory or adopt a more pragmatic approach and
use simulation to examine the distribution of any appropriate estimator or test
statistic; see Morgan (1984).

Other references of interest are DiCiccio (1987) and Lawless (1980) for the
generalized gamma distribution and Shier and Lawrence (1984) for robust
estimation of the Weibull distribution. Cox and Oakes (1984, Chapter 3) give
a good general discussion of parametric methods for survival data. Johnson
and Kotz (1970) give details of a whole range of estimation methods for the
basic distributions discussed here. The paper by Lawless (1983), together with
the resulting discussion is also well worth reading.

3.6 GOODNESS-OF-FIT

As part of a statistical analysis which involves fitting a parametric model, it is
always advisable to check on the adequacy of the model. One may use either
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a formal goodness-of-fit test or appropriate data analytic methods. Graphical
procedures are particularly valuable in this context.

Before discussing graphical methods for model checking, we mention formal
goodness-of-fit tests. One approach is to embed the proposed model in a more
comprehensive model. Tests such as those outlined in section 3.4 may then be
applied. For example, one might test the adequacy of a exponential model
relative to a Weibull model, as in Example 3.2 (continued). In contrast, the
proposed model may be tested against a general alternative. This is the classical
goodness-of-fit approach. An example is the well-known Pearson y*-test. The
literature on goodness-of-fit tests is vast, though the tendency has been to
concentrate on distributions such as the Normal, exponential and Weibull. A
key reference is D’Agostino and Stephens (1986), but see also Lawless (1982,
Chapter 9). Within the reliability context, however, tests based on the methods
of section 3.4, combined with appropriate graphical methods will almost
always be adequate.

In order to discuss graphical methods for checking model adequacy we shall
use the notation introduced in section 2.11. That is, we suppose there are k
distinct times a, <a, <--- <a, at which failures occur. Let d; be the number of
failures at time a; and let n; be the number of items at risk at a; In addition
we shall use the plotting positions

py=1-4{S(a;)+S(a;+0)},

where § is the PL estimator as in equation (2.20). f(afo/wf

In section 2.11 we introduced a plotting procedure for models that depend
only on location and scale parameters, ¢ and o say, such as Gumbel and
Normal distributions. In reliability this amounts to plotting the points

(log aj! F(; 1([))))7

where F is the distribution function of the proposed model with 4 and o set
to 0 and 1 respectively. If the model is approprate, the plot should be roughly
linear. This type of plot, called the quantile—quantile (QQ) plot can be applied
before a formal statistical analysis is attempted. In addition, rough parameter
estimates for the proposed model may be obtained from the slope and intercept
of the plot. These estimates may be of interest in their own right or may be
used as starting values in an iterative scheme to obtain ML estimates.
However, the applicability of this type of plot is limited. For example, it cannot
be used for the gamma model. Moreover, the points on the plot which usually
have the greatest visual impact, the extreme points, are those with the greatest
variability.

A different graphical display, but which uses the same ingredients as the QQ
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plot, is the probability (PP) plot. This involves plotting the points 104
(pj, Flaj; 0),
0.8
where F(a;; 6) denotes the distribution function of the proposed model, evaluated
at the point a; and with the parameters of the model set to ‘reasonable’ ©
estimates (usually the ML estimates). Again, linearity of the plot is indicative 3 06+
of a good agreement between fitted model and data. Since estimates are used, 1:7)
the PP plot can only usually be constructed after fitting the model. However, S
its use is not limited to models with location and scale parameters only. u% 0.4 -
In the PP plot the extreme points have the lowest variability. A refinement
which approximately stabilizes the variability of the plotted points is the
stabilized probability (SP) plot; see Michael (1983). This involves plotting the 0.2 -
points
<% sin”‘(p;'/z), %sin"{F”(aj; 9)}) 00 1 : : :
i n 0.0 0.2 0.4 06 o8 10
Observed value
Alternatively, simulated envelopes may be used to aid interpretation of QQ Fi 12 Wei
and PP plots; see Atkinson (1985). The construction of formal goodness-of-fit igure 32 Weibull PP plot for the cord strength data.
tests which are based on plots has also been investigated by Michael (1983), 104
Kimber (1985) and Coles (1989). ’
Examples 3.3 (Example 2.3 continued) 0.8 -
The Weibull QQ plot for the strengths of 48 pieces of cord is shown in Figure
217. The overall impression of this plot is that it is basically linear except for
the three smallest observed strengths. We now investigate the PP and SP plots S 06—
for these data for a Weibull model. g
Maximum likelihood estimation for a Gumbel distribution applied to the 2
log-strengths gives 1=4.026, and 6=0.0613 with variance-covariance matrix §
for the parameter estimates (4, 6) & 04
. 09985 —0.2191 02
0 (—0.2191 0.5889)‘ (3.10)
The PP and SP plots are shown in Figures 3.2 and 3.3 respectively. The visual 0.0

impact of the three smallest points is much less than in Fig. 2.17. Overall the . I ‘

satisfactory fit of the Weibull model is confirmed. 0.0 0.2 0.4 06 08 10
Returning to the original purpose of analyzing these data, we wish _to Observed value '
estimate S(53). In Example 2.3 we found that the PL estimate is 0.685 with a Figure 3.3 Weibull SP plot for the cord strength data
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standard error of 0.073. Using the Weibull model, the ML estimate of S(53) is

log 53 -4.026
CXP{ - exP("gm—“)} =0.668.

Using cqu.ation (3.3) in conjunction with the above variance-covariance matrix
in expression (3.10), the standard error of the ML estimate is 0.046. This leads
to a somewhat shorter approximate 95% confidence interval, [0.58,0.76], than
that obtained using the PL estimate, which was [0.54,0.83]. ’ ’

210 DATA ANALYTIC METHODS: TYPE Il CENSORING

Consider the situation in which n units are put on test and observation
continues until r units have failed. In other words we have Type 11 censoring!
the first r lifetimes 1, <l <-- <l arc observed, but it is known only that
the remaining n—r lifetimes exceed i, Because n—~r observations are ‘incom-
plete’, it is impossible to calculate the sample moments. So standard moment-
based methods cannot be used. However, all the results based on the empirical
survivor function as discussed in section 2.9 still hold. The only difference 1s
that S(t) is not defined for t>1,.

ey Example 2.2

Mann and Fertig (1973) give details of a life test done on thirteen aircraft
components subject to Type I censoring after the tenth failure. The ordered
data in hours to failure time are:

[

022 050 088 1.00 1.32
133 1.54 1.76 2.50 3.00



