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CHAPTER 12

Fractional Factorial Designs
at Two Levels

The number of runs required by a full 2* factorial design increases geo-
metrically as k is increased. It turns out, however, that when k is not small the
desired information can often be obtained by performing only a fraction of
the full factorial design. This chapter describes how suitable fractions can
be generated and discusses their advantages and limitations.

12.1. REDUNDANCY

Consider a two-level design in seven variables. A complete factorial arrange-
ment requires 27 = 128 runs. From these runs 128 statistics can be calculated,
which estimate the following effects:

interactions
main
average effects 2-factor 3-factor 4-factor 5-factor 6-factor 7-factor

1 7 21 35 35 21 7 1

Now the fact that all these effects can be estimated does not imply that they
all are of appreciable size. There tends to be a certain hierarchy. In terms of
absolute magnitude, main effects tend to be larger than two-factor inter-
actions, which in turn tend to be larger than three-factor interactions, and
so on. This fact relates directly to the properties of smoothness and similarity
discussed earlier. (In particular, for quantitative variables the main effects
and interactions can be associated with the terms of a Taylor series expansion
of a response function. Ignoring, say, three-factor interactions corresponds
to ignoring terms of third order in the Taylor expansion.)
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It is often true, then, that at some point higher order interactions tend to
become negligible and can properly be disregarded. Also, when a moderately
large number of variables is introduced into a design, it often happens that
some have no distinguishable effects at all. We can encompass &m:.
these ideas by saying that there tends to be redundancy in a 2* n.."m_mb if k
is not small—redundancy in terms of an excess number of interactions that
can be estimated and sometimes in an excess number of variables that are
studied. Fractional factorial designs exploit this redundancy. We begin by
considering what effects can be estimated using only a half-fraction of a 2%

factorial design.
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FIGURE 12.1. (a) Normai plot of effects from 2% factorial design, reactor example.
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% i TABLE 12.1a. Results from 2* factorial de-
gg4 32 - . sign, veactor example
variable - +
853 31 ——
1 feed rate (liters/min) 10 15
2 catalyst (%) i 2
8.1 29 3 agitation rate (rpm) 100 120
g8 27 +_ 4 temperature (°C) 140 180
H 0,
168 25 FT § concentration (%) 3 6
703 23 variable response
641 21 (%, reacted)
578 19 —3— 1 2 3 4 5 °
516 17 —¢% run 1 2 3 5. y
453 15 r - - - = - 61
391 13 2 + - - = = 33
328 N 3 -+ - = = 63
%8 O 4 + + - - - 61
203 7 - -+ - - 53
181 6 —{—o— w -t + H -z wm
- - =
3 *8 + 4+ + - - 61
7.8 o . L) I 69
— , 0 + - - + - 61
) 1m - + - + - 94
12+ + -+ - 93
g.m‘ 1 r‘ 13 - - + o+ - 66
.._a + - + + - 60
. 5 - 4+ + + - 95
. BoB L Beoasesis oo . 6 + + + + - 98
5 0 2 4 6 g 17, - - - - 56
] g8 + - - - + 63
{6 S v - + - - + 70
FIGURE 12.1. (b) Normai plot of residuals after eliminating 2, 4, 5, 24, and 45 from 2° *20 + + - - # 65
factorial design, reactor example. _..ww - -+ - F ww
+ - + - +*
23 - + + - + 67
24+ + + - + 65
122. A HALF-FRACTION OF A 2° DESIGN: REACTOR 25 - - - + 4 44
EXAMPLE *26 o+ - -+t 45
27 - + — + + 78
Table 12.1a shows data from a complete 2° factorial design analyzed in . *w.w M + H H H Mw
Table 12.1b. Normal plots (Figure 12.1) indicate that over the ranges of the , 0 o+ - + 4+ 2
variables studied the main effects 2, 4, and 5 and interactions 24 and 45 are 31 -+ 4+ o+ o+ 81
the only effects distinguishable from noise. 32+ o+ o+ + + 82
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378 & FRACTIONAL FACTORIAL DESIGNS AT TWO LEVELS TABLE 12.2 Analysis of a half-fraction of the fuli 2° design: a 2% frac-
. TABLE _w._v. Analysis of 2% factorial de- tional factorial design, reactor example
. sign, reactor example . variable - +
estimates of effects I feed rate (liters/min) 10 15
i 2 catalyst (%) 1 2
average = 65.5 3 agitation rate (rpm) 100 120
[ =~ 1375 123 = 150 4 temperature (°C) - 140 180
2= 195 124 = 1375 § concentration (%) 3 6
3=— 0625 ~Wu = lw.m.\.m design cesponse
e e | — (% racted
145 = 0625 : mp 1 2 3 45 1213141523 24 25 M4 35 45 y
i2 = 1.375 235 = 0.125
3= 075 4= LI25 7 - - - -+ +++ -+ 4+ -4 56
14= 0875 245 = —0.250 2 4+ - - == - - - =t 53
15= 0125 345= 0125 3 -4+ - - - —Ft - 63
23= 0875 W ++ - =+ + ==+ - -+ +=-= 65
24 = 1325 1234 = 00 5 ~—+- - + -+ - +F - 33
5= 20 1245 = 0625 2 +-+-+ — -k -+ 35
3= 2125  2345= ~0625 B -4+ + -+ - -k 67
35= 0875 I125= 15 § +++-—- ++-—+- - -4 61
45 = ~110 1345= 10 v 9 - - -+ - ++ -4+ -+t 69
% +--4++ —-—+++-—---* 45
12345 = —0.25 27 -+ -4+ —+-—-—F -+ 18
2 ++-+- +=-—+-—-+-—-+- 93
% — —+ 4+ + - ==-—-—+F+F 49
‘ : 4 +-++- —++--=-++-- 60
The full 2% factorial requires 32 runs. Suppose that the experimenter had L ww - AT H H H H H H H P Mw.
chosen to make only the 16 runs marked with asterisks in Table 12.1, so that . L
only E.n data c.m Table 12.2 were available. When the 15 main nmwmna and two- . estimates of effects
factor interactions are calculated from the reduced set of data in Table 12.2, (assuming that three-factor and higher order interactions are negligible)
they produce the estimates listed there, which are not very different from
those obtained from the complete factorial design. Furthermore the normal average = 6525 2= 15
plots of Figure 12.2 call attention to precisely the same effects: 2, 4, 24, 45 and ] 1= —20 3= 05
5. Thus the essential information could have been obtained with only half 2= 205 14= —075
the effort. 3= 00 5= 125
The 16-run design in Table 12.2is called a half-fraction. It is often designated 4= 1225 3= 130
as a 2° ! fractional factorial design since 5= —625 WM = :_vww
195 . 2125 59-1 5-1 34= 025
128 =272 =227 =2 5= 225
45 = —9.50

The notation tells us that the design accommodates five variables, each at

two levels, but that only 25~ = 2% = 16 runs are employed. 379
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12.3. CONSTRUCTION AND ANALYSIS OF HALF-FRACT IONS:
REACTOR EXAMPLE

How Were the 16 Runs Chosen?

The 25! design in Table 12.2 was constructed as follows:

&
L
A

)

1. A full 2¢ design was written for the four variables 1, 2, 3, and 4.
2. The column of signs for the 1234 interaction was written, and these were
used to define the levels of variable 5. Thus we made 5 = 1234

Exercise 12.1. By using this procedure, verify that the design obtained is the one given
in Table 12.2.

The Anatomy of the Half-Fraction

i
16
15
14
13
12
n

At this point we seem to have gained something for nothing. It is natural to
ask, Have we lost anything? Look again at the fractional factorial design of
Table 12.2. We have made 16 runs and estimated 16 quantities: the mean, the
5 main effects, and the 10 two-factor interactions. But what happened to the
remaining 16 effects we were able to estimate with the full factorial design—
the 10 three-factor interactions, the 5 four-factor interactions, and the 1
% five-factor interaction?

¥ Let us try to estimate the value of the three-factor interaction 123, Multiply-
. ing the signs in columns 1, 2, and 3, we obtain the sequence (which, to save
space, we write as a row rather than a column)

123= —4+-+——+—++—+——+

P (%}
96.9
80.6
84.4
781
719
65.6
59.4
53.1
45,8
40.6
34.4
28.1
21.9
15,6

9.4

3.1

15

24
10

g We notice that this is identical to
¥ 5= —++-—+-——+—t+—+——+

Thus 123 = 45, and as a consequence the 123 and 45 interactions are con-
founded. Equivalently, in the fractional design the individual interactions
123 and 45 are said to be aliases of each other. Now suppose that we use the
symbol Iy5 to denote the linear function of the observations which we used

to estimate the 45 interaction:

(@)
FIGURE 12.2. Normal plot of (a) effects and (b) residuals after eliminating 2. 4, 5, 24, and 45 from 2%~ fractional factorial design, reactor example

-5

45

u%lmo.*.mw+muimm+mulmmlmq+m_!%._.Am.*.qw
. ~93 + 49 — 60 — 95 + 82) = —9.50 (12.1)

We can call this the I, 5 contrast since it is the difference between two averages
of eight results. Properly speaking, contrast I estimates the sum of the mean

Ls

——l®.
-10

P (%)
96.7
80.0
83.3
76.7
70.0
63.3
56.7
50.0
43.3
36.7
30.0
233
16.7
10.0
33
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a

values of effects 43 and 123, We indicate this by the notation lys— 45+ 123.
1f the columns of signs corresponding to all the other three-factor, four-factor,
and five-factor interactions are obtained by multiplying signs, we get the
results shown in Table 12.3.

TABLE 12.3. Confounding pattern and estimates from 25! design
of Table 12.2

relationship between

column pairs confounding pattern estimate
1 =235 I, = 142345 I, =-20
2 = 1345 f,— 2+ 1345 I, = 205
I=1245 Iy~ 3+ 1245 {,= 00
4= 1235 l,— 4+ 1235 I, = 1225
5=1234 Is— 5+ 1234 Is= —625
12 = 345 1,12+ 345 lp= LS
13 =245 :ULG+N& I,y= 05
14 = 235 lo— 144235 le=—075
15=234 Ls—> 15+ 234 lis= 125
23 = 145 I3 = 23 + 145 Ly= 15
24 =135 la— 24 + 135 I, = 1075
25 = 134 ls— 25 + 134 ls= 125
34 =125 3o = 34+ 125 lie= 025
IS=14 Ij— 35+ 124 Iy = 225
45 = 123 Iy — 45+ 123 45 = —9.50
(I = 12345) [, - average + $(12345)] @, = 6525)

Exercise 12.2. As was done for columns 45 and 123, verify that columns 24 and 135
are identical, Verify the identity of the other column pairs in Table 12.3.

A Justification for the Analysis

Evidently our earlier analysis would be justified if it could be assumed that
effects of third and fourth order (represented by three-factor and four-factor
interactions) could be ignored. In the reactor example the assumption was
apparently justified. We shall see later that the analysis could also be justified
on different and somewhat more subtle grounds (see the subsection entitled
«An Alternative Rationale for the Half-Fraction Design in the Reactor
Experiment”).
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How to Find the Confounding Patterns

In manipulating fractional factorials it is important to be able to obtain the
confounding pattern for any given design. The method of associating like
sign sequences is extremely tedious. Fortunately a much more expeditious
route is available. To understand it remember the following four points:

1. Boldface numerals (e.g., 3 and 12) refer to columns of plus and minus
signs.

2. A product column is obtained by multiplication of the individual elements
in the columns that make up that product. (The product column 124, for
instance, is obtained by multiplication of the individual elements in the
corresponding columns, 1, 2, and 4.)

3. Multiplying the elements in any column by a column of identical elements
gives a column of plus signs, which is designated by the letter 1, that is,
Ixl=12=12=L3=14= I, and so forth.

4. A contrast like [, 5 in Equation 12.1 is obtained by multiplying the obser-
vations by the appropriate plus and minus signs in column 45 and dividing
by N/2 = 8 where N is the number of observations (16 in this case). Each
quantity [ is thus a contrast between two averages, each of N/2 observa-
tions. The single exception is l; = J, which is obtained by multiplying the
observations by the column I of plus signs (i.e., summing the observations)
and dividing the result by N (in this example N = 16).

Generator and Defining Relation

The 25! design in Table 12.2 was constructed by setting

5=1234 (12.2)
This relation is calied the generator of the design. Multiplying both sides by
5, we obtain

5x5=1234 x5 (12.3)

or
5% = 12345 (124)
Thus the generator for the design can equivalently (and more conveniently)
be written as
1= 12345 (12.5)

This version of the identity is readily confirmed by multiplying together the
elements in columns 1, 2, 3, 4, and 5, and noting that a column of plus signs,
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1 is actually obtained. ‘L..o half-fraction is defined* by a single generator, S0
that the refation T = 12345 also provides the defining relation of the design.
This defining relation is the key to the confounding pattern. For example.

multiplying the defining relation on both sides by 1 yields
1=2345

In a similar way multiplying by 2 gives 2 = 1345 and so on to produce all
the identities in the first column of Table 12.3.

The Complementary Half-Fraction

In the above example the generator 5 = 1234, or, equivalently, 1 = 12345,
produced the defining relation for the design. In other words, by generating
a new column § = 1234 we obtained the half-fraction corresponding to the
runs marked with asterisks in Table 12.1. The defining relation I = 12345
provided by this generator immediately yields the confounding pattern of
Table 12.3. The complementary half-fraction is generated by putting 5 =
_ 1234, We then obtain the half-fraction corresponding to the runs of the
original 2° that are not marked with asterisks in Table 12.1. The defining
relation for this design may be written as

I = —12345

In practice either half-fraction can equally well be used. For the data of
Table 12.1 the complementary half-fraction would have given, for example,

: [ = —0.75— 1 — 2345
I, = 18.50 -2 — 1345

I

Exercise 12.3. For the 16 runs in Table 12.1 that do nor have asterisks, calculate the
average and the 15 contrasts Iy, by, ..., lss. Show by making a normal plot that the
conclusions that would result from this fraction would be similar to those obtained
from the other one.
Answer: (average, 1,2.3,4,5,12,13, 14, 15, 23,24, 25, 34,35, 45) =
(65.75, —0.75, 18.5, —1.25,9.25, —6.25.1.25, 1.0,
—~1.0, —1.0,0.25, 15.75, 2.75, 4.0, —0.5, —12.5).

Combining the Two Half-Fractions

Suppose that after completing one of the half-fractions the other was subsequently
added, so that the whole factorial was available. Unconfounded estimates of all effects

* When higher fractions are employed, there is more than one generator. For example, a
quarter-fraction is defined by two gencrators. For more complicated fractions see Appendix 12A.
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could then be obtained by analyzing the 32 runs asa full 2% factorial design run in two
blocks of 16. The same result would be obtaincd by suitably adding and subtracting
estimates from the two individual fractions. For example, we have

first fraction second fraction

I, =205 2+ 1345 I, = 18552 — 1345

whence

il + 1) = 320.5 + 185) = 1952

(12.6)
10, — Ip) = 4205 — 18.5) = 1.0 —» [345

These values for 2 and 1345 agree with those given in Table 12.1 for the complete 2°
design.

12.4. THE CONCEPT OF DESIGN RESOLUTION: REACTOR
EXAMPLE

The 25~ ! fraction is called a resolution V design. Looking at the confounding
pattern in Table 12.3, we see, for example, that I, — 1+ 2345 and Iy, —
12 + 345. Thus main effects are confounded with four-factor interactions,
and two-factor interactions with three-factor interactions.

In general, a design of resolution R is one in which no p-factor effect is
confounded with any other effect containing less than R — p factors. The
resolution of a design is denoted by the appropriate Roman letter appended
as a subscript. Thus we could refer to the design of Table 12.2asa 2~ t design.
To illustrate:

1. A design of resolution R = III does not confound main effects with one
another but does confound main effects with two-factor interactions.

2. A design of resolution R = IV does not confound main effects and two-
factor interactions but does confound two-factor interactions with other
two-factor interactions.

3. A design of resolution R = V does not confound main effects and two-
factor interactions with each other, but does confound two-factor inter-

actions with three-factor interactions, and so on.

v
“In general, the resolution of a two-level fractional design is the length of
the shortest word in the defining relation.
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Resolutions of Some Half-Fractions

For any half-fraction the number of symbols on the right of the defining
relation denotes the resolution of the design. Thus a 2%~ ! half-fraction with
defining relation 1= +12345 has resolution V. In Table 12.4 the 2°~!
half-fractions with defining relations I = £ 123 have resolution III, and the
241 fractions with defining relations I = +1234 have resolution 1V.

Half-Fractions of Highest Resolution

At the beginning of Section 12.3 we gave 3 procedure for constructing a
25-1 design. In fact, it would have been possible to use any interaction or main
effect column to accommodate the fifth variable. The choice we made yields a
half-fraction with highest possible resolution. In general, to construct a
2k~1 fractional factorial design of highest possible resolution:

1. Write a full factorial design for the first k — 1 variables.
2. Associate the kth variable with plus or minus the interaction column

123...% - 1)

Table 12.4 gives examples of 2§ ', 2471, and 2§ ! half-fractions of this kind.
The two 23-! half-fractions obtained by the above rule are shown geo-
metrically in Table 12.4.

Exercise 12.4. Obtain the confounding pattern for a 25-1 design generated by setting
5 = 123. Discuss its properties. What is its resolution? Can you imagine circumstances
in which it might be preferred to the resolution V design?

Partial answer: Iy — 1 + 2351, = 2 + 135, R = V.

An Alternative Rationale for the Half-Fraction Design
in the Reactor Experiment

Consider the 25~ ! half-fraction with I = 12345 given in Tables 12.2 and 124.
Obviously (from its mode of construction), if we omit the fifth column of plus
and minus signs from this design, we have a complete factorial in variables
1,2, 3, and 4. But try omitting column 1 instead. There is now a complete
factorial in variables 2, 3,4, and 5! Indeed, a complete factorial in the remain-
ing variables is obtained whichever column is omitted. We have already seen
that the experimenter could justify the 25-1 half-fraction on the assumption
that three-factor, four-factor, and five-factor interactions could be ignored.
An alternative justifying assumption is that at most only four of the five
variables will produce detectable effects and the other will be essentially

THE CONCEPT OF DESIGN RESOLUTION: REACTOR EXAMPLE

TABLE 12.4. Best half-fractions for k = 3 k=4,andk =S5

2! 2v!
3=12 4=123
(1 =123 (1 = 1239)
a4p 1 23 1 2 3 4
— — + -— —-— —— P
—+— - -+ - =+
-+ - - + - +
+ F + o+ + - -
- - 4+ o+
+-— P + - + -
3=—12 - + + -
A=-123) + + + +
—++
/) o
b _ 4= —123
LT a=-2
t—+, 4 - 1 2 3 4
— - - - 4+
+ — — -
p— lml - —
+ + - 4
pu— —_— + P
+ - 4+
- 4+ o+
+ o+ o+ -
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inert—it will have no detectable main effect or interaction with any other
variable. On the assumption of one or more inert variables, the 2§~ ! design
will generate complete factorials in the remaining variables, no matter which
variables these are.

In fact, our analysis for the reactor example suggests that only three of the
variables had detectable effects: 2, 4, and 5 (catalyst, temperature, and con-
centration). Since variables 1 and 3 were effectively inert, we had a replicated
23 factorial in variables 2, 4, and 5, and the results can be assembled as in
Figure 12.3.

Factorials Embedded in Fractions:
The General Importance of the Concept of Resolution

In general, it can be shown that a fractional factorial design of resolution R
contains complete factorials (possibly replicated) in every set of R — 1
variables. Suppose, then, that the experimenter has a number of candidate
variables but believes that all but R — 1 of them (specific identity unknown)
may have no detectable effects. Then, if he employs a design of resolution R
and his conjecture is justified, he will have a complete factorial-design in the

effective variables. This idea is illustrated with the 23! design in Figure 124,
which projects a 2* pattern in every subspace of two dimensions.

{45, A9} {78, 82}
|
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umoJ {69, 60) “ (93, 95)
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g !
g 56, 86=———|"—
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~
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140~ (53, 63} (63, 61)
[
1 {2} catalyst (%) W

FIGURE 123. Data (% reacted) from a 25-1 fraction, shown as replicated 2° factorial in
variables 2, 4, and 5, reactor example.

2
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A

FIGURE 12.4. A 2} design, showing projections into three 22 factorials.

Exercise 12.5. If a resolution R design gives a full factorial in every set of R — 1
variables, is it necessarily true that a full factorial is obtained in every subset containing
fewer than R — | variables? Answer: Yes.

Exercise 12.6. A 25! design gives full factorials in every subset of ¢ variables. What
is the value of g? Answer: 4, 3,2, or 1 (for an example of g = 3 see Figure 12.3).

Economy in Experimentation Arising from the
Sequential Use of F ractional Designs

Suppose that an experimenter who can make his runs sequentially wishes to
investigate five factors, each at two levels, and is contemplating a 25 design
involving 32 runs. It is almost always better for him to run a half-fraction
containing 16 runs first, analyze the results, and think about them. If necessary,
he can always run the second fraction later to complete the full design.
Frequently, however, the first half-fraction itself will allow him to proceed
to the next stage of experimental iteration, which may involve, for example,
the introduction of new variables or different levels of the old ones. Use of
this sequential approach can thus greatly accelerate progress. It is worth
noting that:

1.# The experimenter should randomize within each {raction.
2. If eventually it is decided to run both fractions, these fractions will be
randomized orthogonal blocks of the complete design.

v TS P
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3. No information will be “lost” except that concerning the interaction
which is actually confounded with the block contrast.

4. The design run as two randomized fractions can give greater precision
than the whole design run in random order because the block difference

is eliminated.

Recapitulation

We began the chapter by discussing redundancy. It was pointed out that, for
moderate k, a full factorial design frequently makes possible the estimation
of many more effects than are detectably different from the noise. Sometimes
these nondetectable effects are high-order interactions and sometimes they
are all the effects associated with some inert variable or variables.

The fractional factorials discussed in this chapter are ideally suited to ex-
ploiting the probable existence of redundancy of one or both of these kinds
for the following reason:

{. It can be arranged so that the confounding that occurs is between effects
of high and low order,

2. A complete factorial design is available for whichever subset of R — 1
variables turns out to have appreciable effects.

In sequential experimentation, unless the total number of runs for a full or
replicated factorial is needed to achieve sufficient precision, it is usually
better to run fractional factorial designs. The fractions, used as building
blocks, can build up to the full factorial design if this is necessary.

We now illustrate these ideas for designs of resolution II.

12.5. RESOLUTION IIl DESIGNS: BICYCLE EXAMPLE*

Suppose that the hypothetical data of Table 12.5 are times in seconds for 2
particular person to complete eight trial bicycle runs up a hill between fixed
marks. These runs were performed in random order on eight successive days.
The design is of resolution Il and is a 135 = 75 fraction of the full 27 factorial.
Thus it is a 23 * design. (Note that 2" ¢ = 27274 = 27427 = £527)

Table 12.6 gives the calculated contrasts. For example,

:ﬂﬁlmo+mmlac+wul.2+mo..mo+mwv (12.7)

* This hypothetical example is an cxtension of the real one in Appendix 11A, but it is assumed
now that both the rider and the bicycle are different.

TABLE 12.5. An eight-run experimental design for studying how time to cycle up a hilt is affected by seven variables

time to
climb hill
(sec)

(I = 124,1= 135,1 = 236, = 1237).

breakfast tires
yes/no hard/soft

gear raincoat
fow/medium on/off

handlebars
up/down

offfon

dynamo

seat
up/down

y

7
123

6

23

5

4
12

3

2

1

69
52
60
83
71
50
59
88

{4+ 4+ 1+

L+t

-— N Y O 00
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TABLE 12/6. Calculated contrasts and abbre-
:©  viated confounding pattern for
dats and design in Table 12.5

seat Ii= 35 1+24+35+67

dynamo I, =(20)- 2+ 14 + 36 + 57

handlebars [y = 10 — 3+ 15+ 26+ 47

gear Iy =@25)~ 4 +12+56+37
raincoat Is= 05— 5+134+46+ 27
breakfast o= 10> 6+23+45+ 17
tires I = 25 » 74+344+25+ 16

(i, = 66.5 — average)

medium ww Mw

gear4

low 52 60

50 59

ofl on

dynamo 2

The table also gives an abbreviated* confounding pattern in which inter-
actions between three or more factors have been ignored. Suppose that
previous experience suggested that the standard deviation for repeated
runs up the hill under the same conditions is about 3 seconds. Thus the cal-
culated effects I, I,,..., 1, havea standard error of about

32 32

vy +r= 21

Evidently only two contrasts, [, and I, are distinguishable from noise.

Their values are circled in Table 12.6. The simplest interpretation of the results
is that only two of the seven factors, the dynamo (2) and gear (4), exert a de-
tectable influence, and they do so by way of their main effects. Having the
dynamo on adds about 12 seconds to the time, and using medium gear instead
of low gear adds about 22 seconds. On this interpretation we have in effect

* The method by which the confounding pattern has becn obtained is given in Appendix 12A.
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a replicated 2 design in the variables 2 and 4, as indicated at the bottom of
Table 12.6. There is, of course, some ambiguity in these conclusions. It is
possible, for example, that I, is large, not because of a large main effect 4, but
because one or more of the interactions 12, 56,37 are large. Weseein Appendix
12B how sequential addition of further runs can resolve such ambiguities.
However, for this example we suppose that the experimenter’s knowledge
of the nature of his bicycle suggests that the simpler explanation is likely to
be right. The experimenter might well decide to proceed to the next stage of
the investigation at this point. .

Because one use of resolution III designs is to determine the main effects
of each of the factors, assuming that they do not interact, these arrangements
have sometimes been called “main effect plans.”

Embedded 2 Factorials in Resolution 111 designs

A resolution R design has a complete factorial (possibly replicated) in every
subset of R — 1 variables. For the resolution III design of Table 12.5, for
example, whichever two columns of the design are chosen, they form a
complete 2? factorial replicated twice. Also notice what happens to the
confounding pattern in Table 12.6 supposing that two variables, say 2 and
4, are effective, and the rest, that is, 1, 3, 5, 6, and 7, are essentially inert.
Then all interactions and main effects containing these numbers vanish,
I,— 2, lg—4,and I, = 24, and the remaining I's measure experimental
error only.

Exercise 12.7. For the examples in Tabie 12.4, verify that any subset of R — 1variables
from a design of resolution R produces a full factorial design.

Construction of 2;j; * Design

The 27~* design in Table 12.5 can be constructed as follows:

1. Write a full factorial design for the three variables, 1,2,and 3.

2. Associate additional variables 4, 5,6, and 7 with all the interaction columns

12, 13, 23, and 123, respectively.

The design is obtained by associating every available contrast with a variable
and is therefore sometimes called a saturated design.*

* It is actually possible to construct supersaturated designs, but we do not recommend them in
ordinary circumstances.
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In Table 12.5 a one-sixteenth fraction of a full 27 factorial design is shown.
How can the other one-sixteenth fractions that make up the full factorial
design be generated? The first design was generated by setting

4=+12 5=+13 6=+23 7= +123 (12.8)
but, for example, we could equally well have used
4=—12 5=+13 6= +23 T=+123 (12.9)

This gives a different one-sixteenth fraction, which is shown in Table 12.7
with further hypothetical data on times to cycle up the hill. Note that none of
the runs in this new design is the same as any of those in the preceding design.
Calculated contrasts for this design are shown in Table 12.8.

TABLE 12.7. A second 2];;* fractional factorial design with times to cycle up 2 hill
(= — 124, 1= 135,1 = 236, 1 = 1,237).

time
to climb hill
seat dynamo handlebars gear raincoat breakfast tires (sec)
run 1 2 3 4 5 6 7
—12 13 23 123
9 - - - - + + - 47
10 ~+ - - + - + + 74
11 - + - + + - + 84
12 + + - - - - - 62
i3 - - + - - - + 53
14+ - + + + - - 78
15 - + + + - + - 87
16 + + + ~ + + + 60

What is the confounding pattern for the new fraction? Notice that the new
fraction was obtained by switching signs for variable 4 in the first design
(variable 4 was associated with — 12 instead of + 12). The abbreviated con-
founding pattern for this new fraction may be obtained, therefore, by switch-
ing signs in the confounding pattern of Table 12.6. This gives the confounding
pattern in Table 12.8.

For this set of data the contrasts calculated from the second fraction con-
firm the conclusions from the first fraction.
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TABLE 12.8. Calculated contrasts and abbreviated confounding
pattern for second design in bicycle experiment

"= 08->1-24+35+67
iy 1022 — 14+ 36 + 57
s 273+ 15+ 26— 47
s 252 24— 12—56—37(e,l_, = —-252—~
—4 + 124 56 + 37)

= —17 -5+ 13—46+27
lo= 22-06+23-45+17
= =077 —344+ 25+ 16

i

The Sixteen Different Fractions

In all there are 16 different ways of allocating signs to the four generators:
4 = +12, 5= 113, 6= +23 7= 4123 (12.10)

Thus appropriate sign switching in columns* 4, 5, 6, and 7 of Table 12.5
produces 16 fractional factorial designs which together make up the complete
27 factorial design. Corresponding sign switching in Table 12.6 produces the
16 different confounding patterns.

Designing Two Fractions

Consider again the bicycle example. Suppose that the 16 results from the
two 2] ¢ fractionals were considered together. What conclusions could be
drawn? Combining the results from Tables 12.6 and 12.8, we obtain Table
12.9.

Conclusions would now be somewhat more certain. In particular, the large
main effect of factor 4 (gear) is now estimated free of bias from two-factor
interactions, and has a value close to that conjectured earlier. The joint effect
of the string of interactions 12 + 56 + 37 can now be estimated separately
from the main effect 4, and it is shown to be small. Most interestingly, all the
two-factor interactions involving the important variable 4 are now free of
aliases. (Of course we continue to assume all three-factor and higher order
interactions to be zero.) For this particular set of data, however, none of these
two-factor interactions is distinguishable from noise. Factor 2 (dynamo),
somewhat less aliased than before, is showing an effect similar to that pre-
viously conjectured.

* The reader can confirm by experimentation that switching signs in other columns of the design

only produces one or another of these basic 16 fractions. However, the order in which the runs
applar can be different.
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< TABLE 12.9. Anaslysis of complete set of 16 runs, combining the
resilts of the two fractions, bicycle example
seat W, + ) =3435+08 = 22- 1+ 35+ 67
dynamo i, + ) =3(120+102) = 111> 2+ 36 + 57
handlebars Ml + 1) =3(10+27) = 19- 3+ 15 + 26
gear W+ 1) = 4225+ 252 = 239+ 4
raincoat M, + L) =405~ L7 =-06- 5+ 13 4+ 27
breakfast Ml + 1) =400+22) = 18- 6+ 23+ 17
tires i, + ) =425-07) = 09— 7+25416
W, - )= }35-08) = 1324
i, - b) = H120 - 102y = 0914
iy -ty =410-27) =-09-47
- )= }225~-252) = —14- 12+ 56+ 37
Iy~ ) =H0S5+ 17D = 1146
Wi — ) =310-22) = -06-4
W, -t =425+0n = 1634

Sequential Use of Highly Fractionated Designs

The preceding example illustrates a useful application of highly fractionated
designs as sequential building blocks. Additional fractions may be mo_.no"& to
resolve ambiguities, which knowledge of the variables and data available so
far suggest may be of importance. We explore two important applications of
this idea. The reader can devise others to suit particular circumstances.
Addition of a Second Fraction to De-alias Any One Main Effect and All Its
Associated Two-Factor Interactions

Consider the two fractions used in the bicycle experiment. The largest effect
obtained from the first set of eight runs was associated with the choice of gear
(variable 4). It might have been argued, therefore, that if further runs were to
be made, they could best be employed to de-alias 4 and all the interactions of
other variables with 4.

Table 12.9 shows that by adding a second fraction in which the sign of
variable 4 has been switched, a design of 16 runs possessing the desired
property is obtained. This ability to de-alias one effect and all its ﬂio-mmmﬂo_.
interactions by adding a second fraction with the appropriate column of signs
switched is a handy device for the sequential use of these designs.

Adding a Second Fraction to De-alias All Main Effects

Consider Table 12.5 again, and suppose that a different second m..moaomw is
added in which signs are switched in all the columns. Then for the new fraction

B
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the first two rows in the confounding pattern (obtained by switching signs
in Table 12.6) are

[ ] =24 —35—67 (I_y= —1+24+4 35+67)
ly»2—14—36—57 (.= —2+ 14+ 36+57)

wmwO*\CiOZ 11l DESIGNS: BICYCLE EXAMPLE

(12.11)

By combining this second fraction with the original fraction, we obtain
W+ h)-1, 4, —-1)—->24+35+67

\ (12.12)
Wy + b)=2, Hy—DB)—-14+36+57
and so on.

This way of augmenting the design yields all main effects clear of all two-
factor interactions, but the two-factor interactions themselves are still con-
founded in groups of three. An example of the use of this sequence is given in
Section 13.3.

Exercise 12.8. Show that the second fraction obtained above by switching all signs
may also be obtained (with runs in a different order) by switching signs in columns 4,
5,6, and 7 only. Can you find other ways to reproduce the second fraction? Explain the
equivalences you find.

General Construction of Resolution 111 Designs

Resolution 111 designs for 2¢ — 1 variables may be obtained by saturating
a 2* factorial with additional variables. For example, to construct a saturated
16-run design in 15 variables first write a full factorial design for four variables
and then associate the extra variables 5, 6, ..., 15 with the [1 interaction
columns 12, 13, 14, 23, 24, 34, 123, 124, 134, 234, and 1234, respectively. The
resulting design is a 2 ~!! fractional factorial design for 15 variables in 16

runs.

Exercise 12.9. Construct a two-level fractional factorial design for 31 variables in
32 runs. This is a 2t~ 7 design; what values do k and p have? Answer: k = 3L, p = 26.

Exercise 12.10. Indicate how you could construct a 262~ %7 fractional factorial design.
Is this a saturated design? Answer: Yes.

Useful designs may be obtained by appropriately deleting columns from
the saturated designs. For example, dropping columns 4 and 7 from the design
matrix for a 27~ design yields a 252 design, the defining relation for which
can be obtained from that for the 27 ~* design by deleting all words containing
4 and 7. The variables to be dropped are selected so as to obtain the most
satisfactory alias arrangement.
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 Plackett and Burman Saturated Designs
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The saturated fractional factorial designs have the following orthogonal*
property: if we take any two columns, then, corresponding to the N/2 plus
signs in the first column, there will be N/4 plus and N/4 minus signs in the
second column, and similarly for the minus signs in the first column. Provided
that all interactions are negligible, designs with this property allow unbiased
estimation of all main effects of N — 1 variables with smallest possible
variance. The fractional factorials so far discussed are available only if N is
a power of 2. Plackett and Burman ( 1946) have obtained arrangements with
this same orthogonal property when N is a multiple of 4. For example, their
design for k = 11 factorsin N = 12 runs is shown in Table 12.10. The fashion
in which two-factor interactions confound main effects for most Plackett and
Burman designs is complicated. However, fold-over pairs of any such
orthogonal design are of resolution IV (see Box and Wilson, 1951).

TABLE 12.10. Plackett and Burman design for study of
i1 factors in 12 runs

variable
run 1 2 3 4 5 6 7 8 9 i il
I + - 4 - - - + + + - +
2 + + - + - - - + + + -
3 -+ 4+ - 4+ - - - + + +
4 + - 4+ + - + - - - + +
5 + + - + 4+ - + - = - +
6 + + + - + + - + - - -
7 - + 4+ + - + + - + - -
8 - - + + + - 4+ + - + -
9 - - - 4+ + + - + + - +
10 + -~ - - + + + - + + -
i1 - + - - = 4+ 4+ + - + +
12 T

12.6. RESOLUTION 1V DESIGNS: INJECTION MOLDING
EXAMPLE

We have seen that for designs of resolution V main effects are confounded
only with four-factor interactions, and two-factor interactions only with
three-factor interactions. Full factorial designs are generated by every subset

 [fthe level of the ith variable is represented by x; = ++ 1 and that of the jth variableby x; = t1,
then £x; = 0, £x; = 0,and Z x;x, = 0 for every iandj.

i

]
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of four variables. Designs of resolution IHI introduce much more serious
confounding, with main effects having two-factor interactions as aliases.
For these designs full factorial designs exist for every subset of two variables.
Designs of resolution IV occupy an intermediate position. No main effect is
confounded with any two-factor interaction, but two-factor interactions are
confounded with each other. For these designs full factorial designs exist for
every subset of three variables.

An Experiment on Injection Molding

In an injection molding experiment (Table 12.1 1) eight variables were studied
ina 287* (a 1% replicate of a 2® factorial of resolution IV). The normal plots,
shown in Figure 12.5, suggest that the linear contrasts I3, 1,5, and [ are dis-
tinguishable from the noise. The largest remaining effect is lg. The confound-
ing pattern, assuming negligible interaction between three or more factors,
is shown in Table 12.12. It seems likely that main effects associated with
holding pressure (3) and booster pressure (5) exist. Also, the interactions
most likely to explain the large size of /5 are perhaps 15 and 38, since these
involve factors 3 and 5, which have large main effects. It is, however, possible
that interactions exist between factors that have no main effects. Without
further information the situation is uncertain. One way to proceed is to
choose a further fraction of eight or 16 runs designed to resolve the ambiguity.
However, in this particular example the large size of l;5 suggested that the
problem might be resolved with even fewer than eight runs. We show in
Appendix 12B how four additional runs were chosen and used to discover
and estimate the responsible interaction.

Construction of the Resolution 1V Design by * Folding Over” a Resolution 111
Design

The sixteen-run 25 ¢ design in Table 12.11 was constructed as follows.
The eight-run 2], ¢ design was first written as in Table 12.5 for the seven
variables 1, 2, 3, ..., 7. A further column labeled 8 and consisting entirely of
plus signs was then added. The remaining eight runs were obtained by switch-
ing all signs in the first set of eight runs. Thus run 9 was obtained by switching

all signs in run 1 and so on.
The Alias Pattern

The alias pattern for the folded-over design given in Table 12.11 can be
obtained from that of the resolution HI design (Table 12.6) by the following
argument. Suppose that we compute for the first set of eight runs

=¥ =y + ...+ o)
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and for the second set of eight runs

~b =3(~ys + Y10+ + Y16
Then using Table 12.6
l,»1+18+24+35+67 and “h=—1+4+18+24+35+67
Now the contrast [, for the complete set of 16 runs is

L= %(-»n +w~+...+v.m+§I.§o...l.¢_ovn*~_ +1)

%) i
067 1§ -
3
800 14
15 + 26 + 38 + 47
83 13 @
767 12 —9
700 11 ©-
633 10
56.7 ]
50.0 8
433 7
38.7 8 ©
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233 4 O
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(a)
FIGURE 12.5. (a) Normal plot of contrasts, injection molding example.
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Similarly for the contrast associated with the interaction 18 it is
hs=#-n+y+t--"—Ys— ¥ + Y10 + Yie) = mﬁ_ - xv.

Thus I, —» I and l,3 — 18 + 24 + 35 + 67. The same argument applied to
the remaining contrasts yiclds the confounding pattern of Table 12.12. A
more complete discussion is given in Appendix 12A.

P (%) i
969 16
906 15
844 14
781 13
7118 12 —@
658 1t
594 10 @o—
53.1 9
489 8 ——
408 ? —
34.4 6 ——
28.1 5 -
219 4 LT
156 3
a4 2 —@
3.1 1 o —
® ® [ ]
o © |wed © ® o &jee [ J
-1 0 1 2
{b)

. FIGURE 12.5. (b) Normal plot of residuals 2% 4 design, injection molding example.




shrinkage

screw
speed

gate
size

time

cycle

pressure

booster

cavity
thickness

pressure

holding

content

moisture

mold
temperature

TABLE 12.11. A 2**resokution IV design, molding example (I = 1248, 1= 1358, 1= 2368, 1= 1237).

un
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CRNOTEO DM =AM
TN IndNERISYSER TABLE 12.12. Calculated contrasts

with their expected
values: interactions

between three or more
B 1 - 20 T T T T I I factorsignored, mold-
ing example
P44+ 1+ 1 L ++ 001+ ++1 I, =-07- I
h=-01- 2
E = 55— 3
T R B G ! ly=~03> 4
: ly=-38— 5
i lg=-01—- 6
h= 06— 7
R B I R N B S B S S B lg= 12— 8
I, =—06— 12+ 37+ 48 + 56
Ly= 09— 13+27+46+58
lig=—04—> 14428+ 36+ 357
Le= 46— 15+26+38+47
T I S S I B S A S B B L= —03— 16+ 25+ 34 +78

lyg==02- 17423+ 68+ 45
lig= =06~ I8+ 24+ 35+ 67
average = 19.75

1l

1 t++++++++ 11 1

., Alternative 28 ~* Fractions

R R ! Sixteen different 28¢ fractions are members of the family making up the

complete 28 design. Individual members of the family may be generated by
sign switching. Exactly as with the resolution I designs, the switching of
signs in one or more columns will always yield a member of the family, and
the associated confounding pattern is obtained by making the corresponding
sign changes in the alias patterns of Table 12.12.

Building Blocks

Resolution IV designs may be used sequentially as were the resolution 1II
designs. As before, sign switching may be used to eliminate particular

o I A2 TR -2 - -\ . .
confounding links.

10

il

12
13
14
5
16

General Construction of Resolution 1V Designs

The construction of a resolution IV design containing 2* variables follows
exactly the pattern given for the 2§ * design:

-
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w

. Write a complete 2* w&m"oam_ with added columns for all interaction terms.

2. Generate a resolution Il design for 2* — 1 variables by saturating this
design with variables..

3. Add a further variable as a column of plus signs.

4. Repeat the design with all signs reversed to give a resolution 1V design for

2% yariables in 2¢* ! runs.

—

An alternative general method is given in Appendix 12A.

12.7. ELIMINATION OF BLOCK EFFECTS IN FRACTIONAL
DESIGNS

Fractional designs may be run in blocks, with suitable contrasts used as
“block variables.” A design in 29 blocks is defined by g independent contrasts.
All effects (including aliases) associated with these basic contrasts and all
their interactions are confounded with blocks.

Example 25" Design in Two Blocks of Eight

Consider again the 25! design of Table 12.2. Suppose the investigator
decided that interaction between feed rate and catalyst concentration was
likely to be negligible. This interaction 13 could then be used for blocking.
The eight runs 2,20,5, ..., 15, having a minus sign in the 13 column, would be
run in one block, and the eight runs 17,3,22,..., 32 in the other. Notice that
in this design the alias 245 (here assumed negligible) of 13 is also confounded
with blocks.

Example: 25! Design in Four Blocks of Four Runs

Suppose that, in the 25-1 design of Table 12.2, columns 13 and 23 are con-
founded with blocks. Then the interaction between these columns 13 x 23 =
1232 = 12 is also confounded. The design would thus be appropriate if we
were prepared to confound with blocks all two-factor interactions between
variables 1, 2, and 3 and their aliases. To achieve this arrangement, runs
20, 5, 12, and 29, for which the 13 and 23 columns have signs (— —), could be
put in the first block, runs 2,23, 26, and 15, for which columns 13 and 23 have
signs (— +) in the second block, and so on. Thus in terms of a two-way table
the arrangement would be as follows:

ELIMINATION OF BLOCK EFFECTS IN FRACIHUNAL LEdIUINS Vv

I v

oy -+ o+

13

| 11

- = - o+
- +
23

The Resolution IV Designs as Main Effect Plans in Blocks of Two

It occasionally happens that we must work with very small block sizes. A
remarkable class of such designs based on the resolution IV arrangement
provides economical main effect plans with a block size of only two. In one
investigation the subject of study was an effluent impurity that tended to
vary slowly with time. Runs made consecutively were thus much more com-
parable than those made further apart. It was possible to run the design in
blocks of 2-hour periods, one experimental condition being run in the first
hour and one in the second. At one stage of the investigation a 16-run main
effect plan was used to study the main effects of eight variables based on a
blocked 28, * design. The plan is shown in Table 12.13. To see how this is
derived, consider the original design given in Table 12.11 and the aliasing
strings in Table 12.12. For the blocking scheme suppose that we use any two-
factor interaction contrast, say I;2, 10 accommodate By, and a second, say
l,3, to accommodate Bs; then [, cannot be used for B, since it can be ob-
tained by multiplying the signs of 12 and 13. Suppose, therefore, we use lia
for B;. (The reader may confirm that any other remaining two-factor
interaction contrast can equally well be employed.) Then the seven columns
of signs obtained for By, B,,B,,B,B;, B,B;, B, B,, B,B; B; exactly corre-
spond to the contrasts I 2, iashiasliss lies li7s liss in some order. They thus
involve only the strings of interactions and not the main effects. When the
design is rearranged in the eight blocks as on the right of Table 12.13, it is seen
that the second run in each block is the mirror image or “fold-over” of the
first run, that is, the signs in one run are exactly reversed in the other.

In designs of this kind, both the ordering within pairs and the sequence in
which the pairs (blocks) are run should be random.

Rather than regard all between-block information as lost, the design can
be analyzed on the basis that there are two different error variances. The
within-block variance is appropriate for inferences about main effects, and
the between-block variance for inferences about the strings of two-factor




