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Box and Meyer (1986) introduced a method for assessing the sizes of contrasts in unreplicated
factorial and fractional factorial designs. This is a useful technique, and an associated graphical
display popularly known as a Bayes plot makes it even more effective. This article presents
a competing technique that is also effective and is computationally simple. An advantage of
the new method is that the resuits are given in terms of the original units of measurement.
This direct association with the data may make the analysis easier to explain.

1. INTRODUCTION

This article concerns the analysis of unreplicated
factorial and fractional factorial designs such as those
used in screening experiments. Such experiments
usually include many factors. Typically, one com-
putes point estimates of a large number of contrasts,
and all of these estimates have the same variance.
The underlying principle of most analyses of such
data is that of effect sparsity, the idea that one can
usually expect only a small number of the effects to
be “active” (i.e. nonzero) in the process under study.
(The literature on two-level factorials usually focuses
on differences between the means at the “high” and
“low” levels, and these are often called “effects.” In
a classical analysis-of-variance model, however, an
effect is defined as the difference between the high
mean and the grand mean—half as large. In this
article, I attempt to avoid confusion by referring to
the high-minus-low differences as contrasts rather than
effects.)

One popular method of analysis (or at least inter-
pretation) is to construct a half-normal plot or a nor-
mal plot of the contrasts (see Box, Hunter, and Hunter
1978; Daniel 1959). The effect-sparsity principle sug-
gests that the active contrasts will tend to show up
as outliers. Normal plots have useful diagnostic prop-
erties as well. For example, a single outlier in the
data will tend to split the normal plot into two distinct
sections. The disadvantage of the normal-plot meth-
ods is that their interpretation is somewhat subjec-
tive,

Box and Meyer (1986) proposed a more formal
technique. It involves computing a posterior prob-
ability that each contrast is active. The prior infor-
mation is summarized in two parameters, a (the
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probability that a contrast is active) and k (the infla-
tion in the standard deviation produced by an active
contrast). Based on an empirical study, the authors
suggested using @ = .2 and k = 10.

The Box—Meyer method is useful, and its results
can be effectively presented in a graphical form known
as a Bayes plot. This is simply a stick diagram or bar
graph of the posterior probabilities, usually with hor-
izontal guidelines at .5 and 1.0 to aid in reading the
values. A contrast having a posterior probability
greater than .5 is deemed to be more likely active
than inactive.

This article presents an effective alternative method
for formal analysis of unreplicated factorials. It is
based on a simple formula for the standard error of
the contrast estimates. The usual ¢ procedures can
be used to interpret the results. Better yet, the con-
trasts can be plotted in a manner similar to the Bayes
plot, with cutoff limits based on the standard error.
An advantage of this plot over the Bayes plot is that
the numerical values of the contrasts are displayed.
Thus one can assess both the size and “significance”
of the contrasts by looking at just one graph. An
additional advantage (unimportant in this age of
computers) is that the computations are easy to carry
out by hand, whereas the Box—Meyer method re-
quires specialized software.

2. PROPOSED METHOD

Letxk,, k2, - . . , Ky denote the contrasts of interest,
and let ¢, ¢, . . . , ¢, denote the corresponding
estimates. In the usual setting, the c; are independent
realizations of N(x;, t?) random variables; that is,
the sampling distributions of the ¢; are (approxi-
mately) normal with possibly different means x; but
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with equal variances t2. Let

5o = 1.5 X median ¢} 1)
j

and define the pseudo standard error (PSE) of the
contrasts to be

PSE = 1.5 x median |c. 2)

lg1<2.559

Note that (1) and (2) are identical, except that the
median in (2) is taken over a restricted set of inlying
¢iI’s. It is shown in Section 4 that (2) is a fairly good
estimate of v when the effects are sparse.

The result (2) may be used in the natural way. For
example, let

ME = 14554 X PSE, 3)

where tg;.4 is the .975th quaantile of a ¢ distribution
on d df. (For reasons described in Sec. 4, d = m/3
is suggested.) ME is a margin of error for c; with
approximately 95% confidence; that is, one can con-
struct an approximate 95% confidence interval for x;
using ¢; = ME.

An important concern is that several inferences
are being made simultaneously. With a large num-
ber, m, of contrasts, one can expect one or two es-
timates of inactive contrasts to exceed the ME lead-
ing to false conclusions. To account for this possibility,
define also a simultaneous margin of error (SME):

SME = ¢4 X PSE, 4)
where
y = (1 + .95Ym)/2. &)

This is derived from the fact that the estimates are
independent. It is exact, not conservative.

For convenience, Table 1 provides values of ¢ g;5,4
and t,, for d = m/3, y given by (5), and common
values of m. They were computed using an algorithm
that allows fractional degrees of freedom.

Rather than constructing formal tests of hypothesis
or confidence intervals, it is suggested that the in-
formation be displayed graphically in a style similar

Table 1. Quantiles of the t Distribution for Common Values
of m and Degrees of Freedom d = m/3
{not rounded to an integer)

m tars:a t.g
7 3.76 9.01
15 2.57 6.22
31 2.22 4.22
83 2.08 3.91
127 2.02 3.84
255 1.99 3.8%

NOTE: The .975th and yth quantiles are used in constructing ME and SME,
respectively.
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to a Bayes plot or an analysis-of-means plot (Ott
1967): Construct a bar graph showing the (signed)
contrasts, and add reference lines at *ME and at
+SME. A contrast whose bar extends beyond the
SME lines is clearly active, one which does not ex-
tend beyond the ME lines cannot be deemed active,
and one in between is in a zone of uncertainty where
a good argument can be made both for its being
active and for its being a happenstance result of an
inactive contrast. Examples are given in Section 3.

3. ILLUSTRATIONS

I illustrate the suggested procedure using two of
the four examples of Box and Meyer (1986), ex-
amples II and IV. Both examples consist of 16 runs
in unreplicated two-level designs.

Example II is a 2} design from Taguchi and Wu
(1980). The response is tensile strength and the fac-
tors (and one-letter designations) are thickness (7)),
method (W, for “way”), current (C), rods (R), pe-
riod (P), material (M), angle (A), opening (O), and
preheating (H). The generators of the design are as
follows: P = WCR, M = —TWCR, A = —TR, O
= —TC, and H = TCR. Example IV is a 2* exper-
iment from Davies (1954). The response is yield of
isatin, and the factors are acid strength (§), time (¢),
amount of acid (A), and temperature (7). The one-
letter abbreviations used here are designed to suggest
the names of the factors and are not the same as
those assigned by Box and Meyer.

Table 2 gives the data (in Yates’s standard order)
for the two examples, and Table 3 shows the esti-
mates of the contrasts. (Since ex. II has a fractional
design, several contrasts are confounded with one
another. The aliases for all main effects and two-way
interactions are shown in the table.) To compute the
PSE of the contrasts in example II, first obtain s,
using the median of all absolute contrasts: s, = 1.5
x .30 = .45. Then perform the identical calculation,
only excluding the two contrasts that exceed 2.55p =
1.13, obtaining PSE = 1.5 X .15 = .225. In example
IV, we obtain s, = PSE = .114 (nothing is excluded
in the second step).

Using Table 1 with m = 15, the ME’s are com-
puted as the following:

Example II. ME = 2.57 x 225 = .58; SME =
5.22 x .225 = 1.17.

Example IV. ME = 2.57 X .114 = .29; SME =
5.22 x .114 = .60.

Using these quantities for guidance in examining
Table 3, two contrasts emerge as active ones in ex-
ample II—P (period) and M (material). Evidently,
the strength is higher for the longer period and the
low level of material. In example IV, two contrasts,
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Table 2. Data for Two of the Examples in Box and Meyer {1986)

Example # Example IV

T w C R P M A o] H  Strength S t A T Yield
- - - - - - - - 43.7 - - - - .08
+ - - - - + + + + 40.2 + - - - 04
- + - - + + - - - 424 - + - .53
+ + - - + - + + o+ 44.7 + + - - 43
- - 3 - + o+ -+ + 424 - -+ - 31
T + -+ = = 45.8 + - + - .09
- + + - - - - + + 42.2 - + + - 12
+ + o+ - 4+ o+ - - 40.6 + o+ o+ - .36
- - - + + + + - + 42.4 - - - + 79
+ - - + + - - + - 455 + - - + .68
- 4+ -+ - + = + 43.6 -+ -+ 73
+ o+ - + - + - + - 40.6 + + - + .08
- - + + - - + + - 44.0 - - + + 77
+ - + -+ - - o+ 40.2 + - + o+ .38
S + + + + + o+ - 425 - + + + 49

N T T T 46.5 + o+ o+ o+ .23
NOTE: Presantation is in dard corder ding to the first four factors.

T (temperature) and ¢7, (time X temperature) are
fairly close to the ME. One or two values of this
magnitude can easily occur among 15 estimates, even
if none of the factors affect the response.

Figures 1 and 2 show these results graphically. These
graphs are similar to analysis-of-means plots (Ott
1967) except that two sets of limits are provided.
Estimates that fall within the inner limits (i.e., most
contrasts in both figures) show little evidence of being
active. Those that fall between the inner and outer
limits could be described as possibly active. In ex-

ample 1V, T is nearly in this range. Those that fall
outside the outer limits are probably active, such as
P and —M in example II, Figure 1. The visual
impressions one gains from these plots are much the
same as the Bayes plots. Normal or half-normal plots
of the contrasts are also recommended (but not shown
here) for their diagnostic value.

4. JUSTIFICATION

The effect-sparsity assumption is that most k; are
equal to 0. Suppose for a moment that they are all

Table 3. Estimated Contrasts for the Two Examples in Table 2

Example I} Example IV
Contrast
index Aliases Estimate Contrast Estimate
—_ mean 42.96 mean 382
1 T, —CO, —RA, - PM .12 S -.191
2 W, —MH -.15 t -.021
3 TW, PH .30 St —-.001
4 C, —TO, —AH 15 A —~.076
5 —-Q, TC, RH .40 SA .034
6 WC, RF, WC -.02 tA -~.066
7 -WO, —RM, ~PA .37 StA .149
8 R, ~TA, - OH 40 T 274
9 —A, TR, CH —.05 ST -.161
10 WR, CE MO .42 tT —.251
11 - WA, —CM, — PO A3 StT -.101
12 CR, TH, WP, AO A2 AT -.026
13 H, —WM, —CA, -RO -.37 SAT ~.006
14 P, - TM 2.15 tAT 124
15 -~M, TR WH 3.10 StAT 019

NOTE: In example I}, aliases for all main affects and two-way interactions are shown. Main effects are shown in boldface to
aid in finding them. Margins of error for the estimates (see text} are =.56 in example H and =,29 in example IV, Simultaneous
margins of error are +1.17 and *.80, respectively.
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Estimatod contrast

T W TW C -0 WC-WO R -A WR-WACR H P -M

Figure 1. Estimates of Contrasts in Example Il

equal to 0. Then the ¢; are independent realizations
of an N(0, 7%) random variable C. Since the median
of |C] is about .6757, it follows that s, is a consistent
estimate of 1.5 Med|C| = 1.017. Further, since Pr(|C]
> 2.57) = .01, PSE is roughly consistent for 1.5 times
the .495th quantile of |C], which is 1.5 X .6657 = 7.

Now suppose that there are just a few active con-
trasts among the ¢;. If we knew which ones they were,
we could exclude them and obtain a consistent es-
timate of t as in the preceding paragraph. But we
do not know exactly which contrasts are active. Mar-
ginally, the ¢; are independent realizations of a ran-
dom vatiable C whose distribution is a mixture of
the form (1 — &)F + aG, where Fis N(0, %), G is
some distribution more highly variable than F, and
« is a contamination parameter. In this case, s; over-
estimates 7, making it unlikely that an inactive con-
trast will exceed 2.55. We can expect the median in
(2) to be based on essentially all of the inactive con-
trasts and possibly a few of the smaller active ones.
Thus PSE will still overestimate z, but not by as much
as s, does.

Note that computing s, is equivalent to the usual
graphical procedure based on the half-normal plot,
in the sense that the line connecting the origin and
the coordinates of the median absolute contrast cor-

0.6 [

0.4

0.0

Eatimated contrast

-0.2

-0.4

-0.0

$§ t St A SA tA StA T ST T SIT AT SAT AT StAT

Figure 2. Estimates of Contrasts in Example IV, '
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responds to the N(O, s;) distribution. PSE is in es-
sence obtained by excluding the most obviously ac-
tive effects, constructing a new half-normal plot, and
superimposing a new line.

Consider the case in which G is N(0, (k7)?) with
k > 1 (the model used by Box and Meyer). Note
that s, converges stochastically to its limiting value,
1.5 Med|C|, as m approaches «. The limiting value
of PSE can be obtained from the median of the dis-
tribution of |C|, truncated at 1.5 Med|C|. These are
easy to obtain numerically. For0 s a=< 3and k =
5, it can be shown that the limiting values for s, lie
between 1.017 and 1.607, but those for PSE range
from 1.007 to 1.157, quite an improvement over 5.

When m is small, the asymptotic results may not
hold. To resolve this, a small Monte Carlo study was
conducted. The results are shown in Table 4. The
design is a Latin square with three values of k (5,
10, and 15), three values of « (.1, .2, and .3), and
three values of m (7, 15, and 31). Baseline cases with
no active contrasts (k = 1 and/or a« = 0) for m =
7, 15, and 31 are also included. These k and « values
were suggested by Box and Meyer (1986) as repre-
sentative of the usual range of possibilities. In ail
cases, the value of 7 is set at 1.00.

The number of Monte Carlo replications (sets of
m simulated contrasts) in each case depends on m.
For m = 7, 15, and 31, there are 2,000, 1,000, and
500 replications, respectively. This makes the stan-
dard errors of the estimates approximately the same.
(To compute the standard error of the estimated mean
of s or PSE, divide the corresponding standard de-
viation by VN, where N is the number of replica-
tions.) Rather than generating data from contami-
nated normal distributions, it was deemed more
appropriate to hold fixed the number of active con-
trasts in each case. For example, in the case m =
31,k = 5, and a = .2, each of the 500 simulated
sets of contrasts consists of 25 N(0, 1) variates and
6 N(0, 5%) variates; the true a is 6/31 = .19.

All computations were done on an IBM PC using
a program written in C language, with double-pre-
cision (64-bit) reals. The polar method was used to
obtain normal deviates from uniform pseudorandom
numbers. Uniforms were generated using an exciu-
sive—or mixture of a congruential and a shift-register
generator with a word size of 32 bits.

Several consistent patterns are evident in Table 4.
First, both asymptotically and in finite samples, s, is
always larger than PSE (logically, this must happen).
In the baseline cases, the distinction is small (as it
should be), but when active contrasts are present, it
is much more noticeable. Second, the expectations
and limiting values of both s, and PSE all exceed
1.00, suggesting that the method is conservative (i.e.,
the true confidence coefficient is deflated due to over-




%
E

— "

IS

I

QUICK AND EASY ANALYSIS OF UNREPLICATED FACTORIALS

Table 4. Monte Carlo Results for the Scale Estimates s, and PSE

a=1

Sp PSE

k = 1 {baseline)

{0/7 x 2,000)
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Limit 1.01 1.00
MC mean 1.06 1.06
MC SD 43 .45
k=5 {2/15 x 1,000}
Lirnit 1.15 1.05
MC mean 1.17 1.06
MC SD .35 .35
k=10 {1/7 x 2,000}
Limit 1.19 1.03
MC mean 1.22 1.08
MC SD .49 47
k=15 {3/31 x 500)
Limit 1.13 1.02
MC mean 1.13 1.01
MC SD .24 .24

a=.2 a= 3

S PSE So PSE
{0715 x 1,000) {0/31 x 500}
1.01 1.00 1.01 1.00
1.03 1.01 1.03 1.01
.30 .32 .21 .22

{6/31 x 500) (2/7 % 2,000)
1.23 1.08 1.38 1.14
1.26 1.11 1.42 1.23
.27 27 56 .58
{3/15 x 1,000) (9/31 x 500)
1.28 1.05 1.47 1.10
1.31 1.08 1.48 1.11
.39 .37 .31 .28
{1/7 x 2,000} {4715 x 1,000)
1.20 1.03 1.44 1.08
1.25 1.09 1.47 1.17
.49 46 .41 .37

NOTE: Each simulated sample of m contrasts consists of [m{1 — e) + .5| random numbers from the MO, 1} distribution and
the rest from the N{0, k%) distribution. The notation {a/m x N} shows the number a of contaminants {i.e., active contrasts), the
number of contrasts m, and the number N of Monte Carlo samples generated. Note that contominanis are impossible in the
baseline cases {k = 1, @ = 0}. Shown are the limiting values of s, and PSE (limit} and Monte Carlo estimates of the means {(MC
mean) and standard deviations {MC SD) of their sampling distributions.

estimating r). Third, for both s, and PSE, the finite-
sample values exceed the limiting values (with one
minor exception). The distinction is greater for smaller
m.

The clearest interpretation of PSE is found by di-
viding its observed means by the asymptotic values
(the standard errors of these ratios are all about .01).
With m = 7, these ratios vary from 1.05 to 1.07,
with m = 15, they fall between 1.01 and 1.03, and
with m = 31, they fall between .99 and 1.03. So it
appears that with m = 15 or higher the expected
value of PSE is reasonably approximated by its lim-
iting value.

To get an idea of the appropriate degrees of free-
dom, the empirical distributions of PSE? were fitted
by scaled chi-squared distributions by matching the
first two moments (the fits are quite good). The fitted
degrees of freedom in the baseline cases are 2.8, 5 4,
and 10.4 for m = 7, 15, and 31—suggesting the rule
that d = m/3 is about right for the number of degrees
of freedom. The fitted degrees of freedom in the

I

nonbaseline cases tend to be somewhat smaller (but
not drastically so). The lowest fitted degrees of free-
dom occur in those cases with the highest limiting
PSE. Using a few too many degrees of freedom will
not overbalance this conservatism, so it is recom-
mended that d = m/3 df be used regardiess of the
number of active contrasts detected.

[Received June 1988. Revised June 1989.)
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