WEEK 6, 2006 February 9 and 10

TMA4275 LIFETIME ANALYSIS

Bo Lindqvist

Department of Mathematical Sciences NTNU

bo@math.ntnu.no http://www.math.ntnu.no/~bo/

Why parametric models?

- Complements nonparametric techniques.
- Parametric models can be described concisely with just a few parameters, instead of having to report an entire curve.
- It is possible to use a parametric model to extrapolate (in time) to the lower or upper tail of a distribution.
- Parametric models provide smooth estimates of failuretime distributions. In practice it is often useful to compare various parametric and nonparametric analyses of a data set.

PARAMETRIC LIFETIME ANALYSIS IN MINITAB

	ntitled																<u>-'</u>
<u>Fie Edit Data</u>	Calc Stat 9	aph Editor															
2888	Bas	ic Statistics	10	980 .	0 🗖 🗖 D	2 🗟 🐮	CE		-246	1 1. 0							
Session	Regression																
5 Session		AVC	<u></u>														
	DO																1
		ality Tools	. :					5									
Welcome to M		abiity/Surviv		Demonstra	ation Test Plan	00	1										
	1.557	tivariate		Estimation													
		ie Series			d Life Test Pla	ns											
	Tal		•			ght Censoring)	5 m	Distantia di ana T			1						
	No	nparametrics	•			bitrary Censorir		Distribution I	<u>)</u> verview Plot								
	ED	A	•						istribution An								
	Por	ver and Sam			Growth Curv				ic Distributio								
			E.	Nonparam	etric Gr <u>o</u> wth	Curve		Jonparamee	in Distributio								
					d Life Testing.												
					with Life Dat	a											
				Probit Anal	ysis												
a []																	
[<u>m</u>]																	>
Worksheet 1	***															_	
																Committee Verter	and the second
+ C1	C2	C3	C4	C5	C6	C7	C8	C9	C10	C11	C12	C13	C14	C15	C16	C17	^
	C2	C3	C4	C5	C6	C7	C8	C9	C10	C11	C12	C13	C14	C15	C16	C17	
1	C2	C3	C4	C5	C6	C7	C8	C9	C10	C11	C12	C13	C14	C15	C16	C17	
1 2	C2	C3	C4	C5	C6	C7	C8	C9	C10	C11	C12	C13	C14	C15	C16	C17	
1 2 3	C2	C3	C4	C5	C6	C7	C8	C9	C10	C11	C12	C13	C14	C15	C16	C17	
1 2 3 4	C2	C3	C4	C5	C6	C7	C8	C9	C10	C11	C12	C13	C14	C15	C16	C17	
1 2 3 4 5	C2	C3	C4	C5	C6	C7	C8	C9	C10	C11	C12	C13	C14	C15	C16	C17	
1 2 3 4 5 6	C2	C3	C4	C5	C6	C7	C8	C9	C10	C11	C12	C13	C14	C15	C16	C17	
1 2 3 4 5 6 7	C2	C3	C4	C5	C6	C7	C8	C9	C10	C11	C12	C13	C14	C15	C16	C17	
1 2 3 4 5 6 7 8	C2	C3	C4	C5	C6	C7	C8	C9	C10	C11	C12	C13	C14	C15	C16	C17	
1 2 3 4 5 6 7 8 9	C2	C3	C4	C5	C6	C7	C8	C9	C10	C11	C12	C13	C14	C15	C16	C17	
1 2 3 4 5 6 6 7 8 9 9	C2	C3	C4	C5	C6	C7	C8	C9	C10	C11	C12	C13	C14	C15	C16	C17	
1 2 3 4 5 5 6 6 7 7 8 8 9 10 11	C2	C3	C4	C5	C6	C7	C8	C9	C10	C11	C12	C13	C14	C15	C16	C17	
1 2 3 4 5 6 6 7 8 9 9 10 11 11 12	C2	C3	C4	C5	C6	C7	C8	C9	C10	C11	C12	C13	C14	C15	C16	C17	
1 2 3 4 5 6 7 8 9 10 11 11 12 13	C2	C3	C4	C5	C6	C7	C8	C9	C10	C11	C12	C13	C14	C15	C16	C17	
1 2 3 4 5 6 7 7 8 9 9 10 11 12 13 14	C2	C3	C4	C5	C6	C7	C8	C9	C10	C11	C12	C13	C14	C15	C16	C17	
1 2 3 4 5 6 6 7 7 8 8 9 9 10 11 11 12 13 14		C3	C4	C5	<u>C6</u>	C7	C8	C9	C10	C11	C12	C13	C14	C15	C16	C17	
1 2 3 4 5 5 6 7 7 8 9 9 10 11 12 13 14 14 m Pr D				C5	<u>C6</u>	C7	C8	C9	C10	C11	C12	C13	C14				
1 2 3 4 5 6 7 8		no/right cer	soring			C7			C10	C11			C14		Editable	C17	25

3

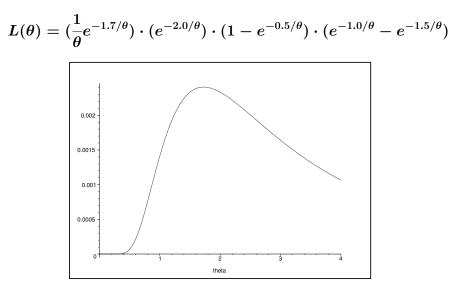
DATA OPTIONS

RIGHT CENSORING:

Y_i	δ_i
Observed	Cens. status
time	1: Lifetime
	0: Censoring

ARBITRARY CENSORING:

Start variable A_i	End variable B_i	
1.7	1.7	Exact lifetime 1.7
2.0	*	Right censoring at time 2.0, i.e. lifetime is > 2.0
*	0.5	Left censoring at time 0.5, i.e. lifetime is < 0.5
1.0	1.5	Interval censoring: Lifetime between 1.0 and 1.5


LIKELIHOOD CONTRIBUTION

Obs. type	Start variable	End variable	Likelihood contribution
	A_i	B_i	
Exact lifetime	1.7	1.7	f(1.7; heta)
Right censoring	2.0	*	1-F(2.0; heta)
Left censoring	*	0.5	F(0.5; heta)
Interval censoring	1.0	1.5	F(1.5; heta)-F(1.0; heta)

5

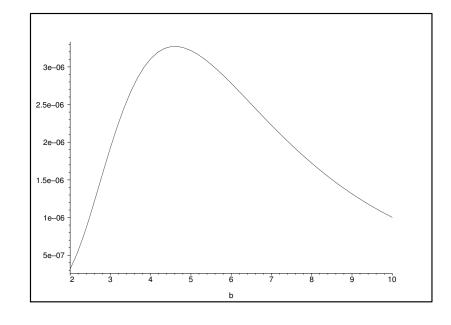
LIKELIHOOD FOR MODEL $f(t; heta) = (1/ heta)e^{-t/ heta}$

Maximum likelihood estimate: $\hat{\theta} = 1.725$

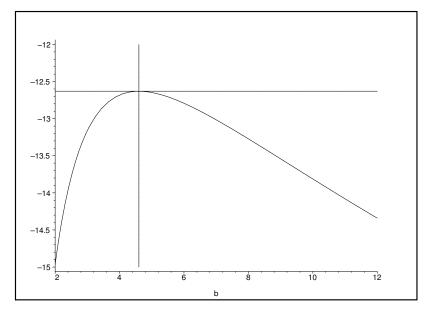
ARBITRARY CENSORED DATA: MINITAB OUTPUT

Distribution Analysis, Start = A and End = B

Variable Start: A End: B


Censoring						
Uncensored		1				
	sored value	1	-			
Interval c	ensored va	1 lue 1 1				
Left censo	ored value	1				
Estimation	Method: M	aximum Lik	elihood			
Distributi	on: Expo	nential				
Parameter	Estimates					
		Standard	95,0% No	ormal C	:I	
Parameter	Estimate	Error	Lower	Upp	ber	
Mean	1,72529	0,998421	0,554978	5,363	353	
Log-Likeli	.hood = -6,	029				
Goodness-c	f-Fit					
Anderson-D	arling (ad	justed) =	4,933			
Characteri	stics of D	istributic	n			
			Star	Idard	95,0% Normal	CI

	Estimate	Error	Lower	Upper
Mean (MTTF)	1,72529	0,998421	0,554978	5,36353
Standard Deviation	1,72529	0,998421	0,554978	5,36353
Median	1,19588	0,692053	0,384682	3,71771
First Quartile (Q1)	0,496336	0,287228	0,159657	1,54299
Third Quartile(Q3)	2,39177	1,38411	0,769363	7,43543
Interquartile Range(IQR)	1,89543	1,09688	0,609706	5,89244


EXAMPLE: RIGHT CENSORED DATA

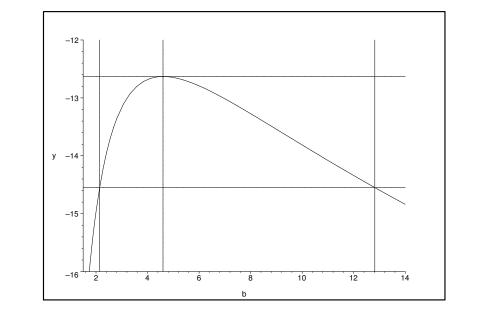
•	C1	C2
	Y	D
1	0,6	0
2	0,8	1
3	2,1	1
4	2,1 3,2	1
5	3,3	0
6	4,4	1
7	8,6	1

LOG-LIKELIHOOD FUNCTION

Maximum likelihood estimate: $\hat{\theta} = 4.6$

Distribution Analysis: Y

Variable: Y Censoring Information Count Uncensored value 5 Right censored value 2 Censoring value: D = 0 Estimation Method: Maximum Likelihood Distribution: Exponential Parameter Estimates Standard 95,0% Normal CI Parameter Estimate Error Lower Upper Mean 4,6 2,05718 1,91465 11,0516 Log-Likelihood = -12,630 Goodness-of-Fit Anderson-Darling (adjusted) = 3,767 Characteristics of Distribution


Standar	d 95,0% N	ormal CI	
ate Erro	r Lower	Upper	
4,6 2,0571	8 1,91465	11,0516	
4,6 2,0571	8 1,91465	11,0516	
848 1,4259	3 1,32713	7,66041	
334 0,59181	5 0,550810	3,17936	
695 2,8518	6 2,65427	15,3208	
362 2,2600	5 2,10346	12,1415	
	nate Erro 4,6 2,0571 4,6 2,0571 8848 1,4259 2334 0,59181 7695 2,8518	nate Error Lower 4,6 2,05718 1,91465 4,6 2,05718 1,91465 8848 1,42593 1,32713 2334 0,591815 0,550810 7695 2,85186 2,65427	

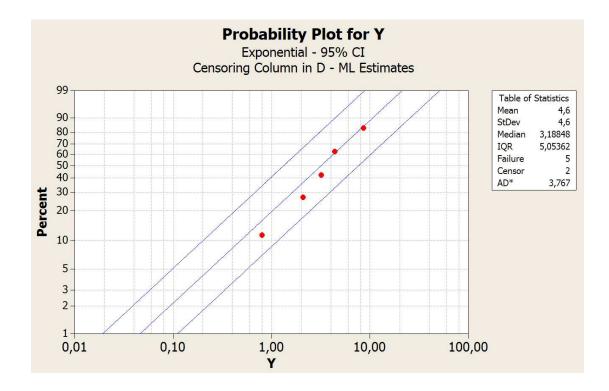
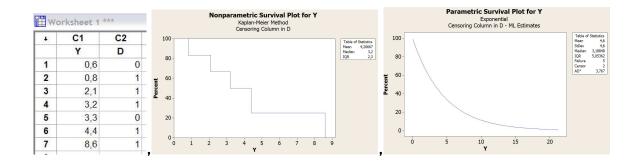

11

Table of Percentiles


		Standard	95,0% No	rmal CI
Percent	Percentile	Error	Lower	Upper
1	0,0462315	0,0206754	0,0192429	0,111073
2	0,0929325	0,0415607	0,0386811	0,223273
3	0,140112	0,0626601	0,0583187	0,336624
4	0,187781	0,0839783	0,0781597	0,451150
5	0,235949	0,105520	0,0982086	0,566875
6	0,284627	0,127289	0,118470	0,683825
7	0,333825	0,149291	0,138947	0,802025
8	0,383555	0,171531	0,159646	0,921504
9	0,433829	0,194014	0,180572	1,04229
10	0,484658	0,216746	0,201728	1,16441
20	1,02646	0,459047	0,427241	2,46610
30	1,64070	0,733745	0,682907	3,94184
40	2,34980	1,05086	0,978051	5,64546
50	3,18848	1,42593	1,32713	7,66041
60	4,21494	1,88498	1,75437	10,1265
70	5,53827	2,47679	<mark>2,30518</mark>	13,3059
80	7,40341	3,31091	3,08151	17,7869
90	10,5919	4,73684	4,40864	25,4473
91	11,0765	4,95358	4,61037	26,6117
92	11,6184	5,19588	4,83588	27,9134
93	12,2326	5,47058	5,09155	29,3892
94	12,9417	5,78770	5,38669	31,0928
95	13,7804	6,16277	5,73577	33,1078
96	14,8068	6,62182	6,16301	35,5739
97	16,1302	7,21363	6,71382	38,7532
98	17,9953	8,04775	7,49015	43,2343
99	21,1838	9,47368	8,81728	50,8947

LOG-LIKELIHOOD FUNCTION

Nonparametric and parametric survival plots for data from exponential example

15

Motivation for the exponential distribution

- Simplest distribution used in the analysis of reliability data.
- Has the important characteristic that its hazard function is constant (does not depend on time t).
- Popular distribution for some kinds of electronic components (e.g., capacitors or robust, high-quality integrated circuits).
- This distribution would not be appropriate for a population of electronic components having failure-causing quality-defects.
- Might be useful to describe failure times for components that exhibit physical wearout only after expected technological life of the system in which the component would be installed.

Motivation for the Weibull distribution

- The theory of extreme values shows that the Weibull distribution can be used to model the minimum of a large number of independent positive random variables from a certain class of distributions.
 - Failure of the weakest link in a chain with many links with failure mechanisms (e.g. fatigue) in each link acting approximately independent.
 - Failure of a system with a large number of components in series and with approximately independent failure mechanisms in each component.
- The more common justification for its use is empirical: the Weibull distribution can be used to model failuretime data with a decreasing or an increasing hazard function.

Motivation for lognormal distribution

- The lognormal distribution is a common model for failure times.
- It can be justified for a random variable that arises from the product of a number of identically distributed independent positive random quantities (remember central limit theorem for sum of normals).
- It has been suggested as an appropriate model for failure time caused by a degradation process with combinations of random rates that combine multiplicatively.
- Widely used to describe time to fracture from fatigue crack growth in metals.
- Useful in modeling failure time of a population electronic components with a decreasing hazard function (due to a small proportion of defects in the population).
- Useful for describing the failure-time distribution of certain degradation processes.