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REPAIRABLE SYSTEMS/RECURRENT EVENTS/
COUNTING PROCESSES

Definition of repairable system (Ascher and Feingold 1984):

“A repairable system is a system which, after failing to perform one or
more of its functions satisfactorily, can be restored to fully satisfactory
performance by any method, other than replacement of the entire system”.
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TYPICAL EXAMPLES

@ System is repaired and put into use again.
@ Machine part is replaced.

© Relapse from disease (epileptic seizures, recurrence of tumors)
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NOTATION

Modeling as a counting process; i.e. counting events on a time axis.
N(t) = # events in (0,t].

N(s,t) = # events in (s, t] = N(s) — N(t).

51,55, - are event times.

Ty, T, --- are times between events; also called “sojourn times”.

NOTE: It is common to disregard repair times, but one could have
situations where “up times” alternate with “down times" of a system.
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“HAPPY" AND “SAD" SYSTEMS

Ascher and Feingold presented the following example of a “happy” and

“sad” system:
15 27 32 _ 43 51 66 177 _|o e
N A
177 65 51 8 2 715 |@ @
- o—o—06—0—00 | ~

@ Their claim: Reliability engineers do not recognize the difference
between these cases since they always treat times between failures as
i.i.d. and fit probability models like Weibull.

@ Their conclusion: Use point process models to analyze repairable
systems datal
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APPLICATIONS

0 S S e Sn T

@ Applications: engineering and reliability studies, public health, clinical
trials, politics, finance, insurance, sociology, etc.

Reliability applications:

breakdown or failure of a mechanical or electronic system
discovery of a bug in an operating system software
the occurrence of a crack in concrete structures

the breakdown of a fiber in fibrous composites

Warranty claims of manufactured products

Bo Lindqvist Slides 14 TMAA4275 LIFETIME ANALYSIS 7/41



TYPICAL DATA FORMAT; EVENT PLOT
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PROSCHAN (1963) AIRCONDITIONER DATA

Times of failures of aircondition system in a fleet of Boeing 720
airplanes

Event Plot for Aircondition Failures
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NELSON (1995) VALVESEAT DATA

Times of valve-seat replacements in a fleet of 41 diesel engines

Diesel Engine

Bo Lindqvist

Event Plot for Valve Seat Replacements
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BHATTACHARJEE ET AL. (2003) NUCLEAR PLANT FAILURE

DATA

e Failure data for closing valves in safety systems at two nuclear
reactor plants in Finland. Failures type: External Leakage,
follow-up 9 years for 104 valves. 88 valves had no failures

Event Plot for Closing Valves
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AALEN AND HUSEBYE (1991) MMC DATA

Aalen and Husebye (1991): Migratory motor complex (MMC)
periods in 19 patients, 1-9 events per individual.

Individual Observed periods (minutes)

1 112 145 39 52 21 34
33 51 (54)

2 206 147 (30)

3 284 59 186 (4)

4 94 98 84 (87)

5 67 (131)

6 124 34 87 75 43 38
58 142 75 (23)

7 116 71 83 68 125 (111)

8 111 59 47 95 (110)

9 98 161 154 55  (44)

10 166 56 (122)

11 63 20 63 103 51 (85)

12 47 86 68 144  (72)
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PROBABILISTIC MODELING OF RECURRENT EVENTS

Definition: W(t) =4er E[N(t)] = expected # events (failures) in (0,t].
w(t) =4er W'(t) = Rate of Occurrence of Failures (ROCOF).
W(t+ h)— W(t)

w(t) = flli_r>n0 h
o EINGE+ )] — E[N(D)
A0 h
. E[N(t+ h) — N(t)]
= lim
h—0 h
— lim E[N(t,t + h)]
h—0 h
— lim expected#events in(t, t + h)
 h—0 h

So expected number of events in (t,t + h) = w(t)h
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PROBABILISTIC MODELING OF RECURRENT EVENTS

Definition: Counting process is regular if
P(N(t,t+ h) > 2) = o(h)

i.e. small, even compared to h, meaning that ° ( ) 0,as h—20
In practice regular means "No simultaneous events . So:

E[N(t,t+h)] = 0-P(N(t,t+h)=0)+1-P(N(t,t+h)=1)
+ 2-P(N(t,t+h)=2)+---

Hence

E[N(t,t+h)] P(N(t,t+h)=1) o(h)
~ + ,
h h h
so w(t) = limp_o w or P(N(t,t+h)=1)~ w(t)-h
(for a regular process).
This is analogous to P(t < T < t+ h|T > t) = z(t)h
for hazard rates (which sometimes are called FOM = Force of Mortality )
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BASIC MODELS FOR REPAIRABLE SYSTEMS

0 51 S, e Sn T

@ RP(F): Renewal process with interarrival distribution F.

Defining property:
o Times between events are i.i.d. with distribution F

o NHPP(w(-)): Nonhomogeneous Poisson process with intensity w(t).

Defining property:
© Number of events in (0, t] is Poisson-distributed with expectation
Jy w(u)du = W(t)
@ Number of events in disjoint time intervals are stochastically
independent
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THE NONHOMOGENEOUS POISSON PROCESS

The NHPP is given by

e Specifying the ROCOF (intensity) w(t),
@ which has the basic property that P(N(t,t + h) = 1) = w(t)h
@ assuming regularity of point process

@ assuming independence of number of events in disjoint intervals

Properties of NHPP:

N(s,t) = # events in (s,t] is Poisson(ft w(u)du)

N(t) = # in (0,t] is Poisson( [y w(u)du), i.e. Poisson(W/(t)).
(N()J):W“ - mfmJ:QL~-deNﬁ»:MKﬂm
w(t) = W/(t) is reaIIy the ROCOF.

o E[N(s,t)] = [ w(u)du = W(t) — W(s)
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MODELING OF TREND

Advantage of NHPP and reason for its extensive use:

Can model a trend in the rate of failures, because
P(failure in (t,t + h)) ~ w(t)h.

e w(t) " deteriorating system ("sad system”) e.g. aging of a
mechanical system
e w(t) \, improving system ("happy system”) e.g. software reliability.

e w(t) = A (constant): Homogeneous Poisson process (HPP)
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MORE PROPERTIES OF NHPP

Let S; is the time to first failure. For HPP, this is expon(\).
For NHPP, P(Ty > t) = P(N(t) = 0),
so since N(t) ~ Poisson(W(t)),

Rr,(t)=P(T1 > t) = Wé!t)o e~ W(t) = ¢=WI(1)
Thus, Z1,(t) = W(t), so

zry(t) = w(t),

i.e. the ROCOF w(t) for an NHPP equals the hazard rate for the time to
first failure.
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EXAMPLE

Suppose 51, Sy, ... is and NHPP with w(t) = 2t and W(t) = t2.

What is the expected # of failures in the time intervals [0, 1],[1, 2], [2, 3],
all having length 17

E[N(0,1)] = W(1) — W(0) =1
E[N(1,2)] = W(2) — W(1) =22 -12=3
E[N(2,3)] = W(3) - W(2)=9-4=5

Time to the first failure: .
Rr,(t) = P(Ty > t) = P(N(0, t) = 0) = W e-W(1) — =¥
= fr,(t) = Ry, (t) = 2te™" = w(t)e" (), which is a Weibull

distribution.
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POINT PROCESS MODELING OF RECURRENT EVENTS

| t |

0 S S W .. Sy 7
o(t|Fe-)

o F;_ = history of events until time t.

e Conditional intensity at t given history until time t,

Pr(failure in [t, t + h)|F;-)

o(t|Fe—) = lim
hl0 h
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SPECIAL CASES: THE BASIC MODELS

e NHPP(w(+)):

¢(tFr-) = w(t)

so conditional intensity is independent of history.
Interpreted as “minimal repair” at failures

e RP(F) (where F has hazard rate z(+)):

P(t|Fe-) = z(t — Sn(—))

so conditional intensity depends (only) on time since last event.
Interpreted as “perfect repair” at failures

@ Between minimal and perfect repair? So called imperfect repair
models.

Bo Lindqvist Slides 14 TMAA4275 LIFETIME ANALYSIS 21 /41



PERFECT AND MINIMAL REPAIR

Assume that we have a component or system with lifetime T, and
corresponding hazard rate z(t).

Perfect repair: Assume that the component at each failure is repaired to
as good as new (or, possibly, is replaced). Then we can consider the
inter-failure times T1, T»,... as independent realizations of T, hence
51,55, ... is a renewal process.

Thus, conditional ROCOF at t is z(time since last failure) = z(t — Sp(y))

Minimal repair: Assume that the system at each failure is repaired only
to the same state as immediately before the failure. Then the probability
of failing in (¢, t + h) will always be the same as for a system starting at
time 0 which never has failed, namely ~ z(t)h. Thus rate of occurence of
failures is independent of the history.

Can be shown that minimal repair as defined above, corresponds to the
property of an NHPP with ROCOF w(t) = z(t).
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CONDITIONAL INTENSITY FOR REPAIRED COMPONENT

Consider a component with hazard rate z(t), which is repaired at failures.

CONDITIONAL ROCOF BY MINIMAL REPAIR (NHPP) AND
PERFECT REPAIR (RENEWAL PROCESS)
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NONPARAMETRIC ESTIMATION OF CUMULATIVE ROCOF W(t)

First: Assume that we have data for one system only. Then since
W(t) = E[N(t)], we estimate W(t) by W(t) = N(t).

Cumulative Number of Unscheduled Maintenance
Actions Versus Operating Hours
for a USS Grampus Diesel Engine
Lee (1980)
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NONPARAMETRIC ESTIMATION OF CUMULATIVE ROCOF W(t)

Assume now, more generally:

@ m processes are observed, assumed to have the same W/(t)
@ processes are not necessarily NHPPs

o first process is observed on time interval (0, 7]
second process on (0, 73]

Let Tmax = largest 7;

@ Y(t) = # processes under observation at time t.

We want to estimate W(t)
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TOWARDS THE NELSON-AALEN ESTIMATOR FOR W(t)

Divide the time axis at hg = 0, hy, hp, ... up to Tmax.
Assume for simplicity that all the 7; are among the h;.

Let D; = # events in (hj_1, h;] (total for all systems)
and y; = value of Y(t) in (hi_1, hj]

For each process:
EIN(hi1., h)] = EIN(hi)] — EIN(h;_1)] = W(h;) — W(h;_1)

Thus when all processes are considered:
E(Di) = yi(W(hi) — W(hi-1)),
and E(2:) = W(hj) — W(hj_y) fori=1,2,...

But then
D D, D
E[y—ll] + E[y—;] + ...+ E[y—:]

= W(hl) — W(ho) + W(hz) — W(hl) +...+ W(hk) — W(hk_l)
= W(he) — W(ho) = W(h)
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THE NELSON-AALEN ESTIMATOR

Recall E[2] + E[22] + .. +E[ <] = W(h)

This suggests the estimator
k

. D;
W(h)=> — fork=1,2...

i1 7
Suppose the failure times, when joined for all the m processes, are ordered
as i < bh<...<t,

Then by letting the h; be more and more dense, we get contributions for
at most one failure time in each interval (hj_1, h;).

Then we get, letting d(t;) = #events at t; (so d(t;) = 1 if regular process)
Y (t;) = #processes observes at t;

o- i
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THE NHPP CASE

Going back to the first estimator W (hy) = fozl % for k=1,2..., if the

processes are NHPPs with CROCOF W(t), then

@ D; ~ Poisson(y;(W(h;) — W(h;i-1)))
@ The D; are independent (very important implication of NHPP)

Now Var(%) = y—1'2Var(D,-) = —E(?")

Yi
and hence
a “Var(D)) < E(DY)
Var(W Z Z 2 :Z 2
i=1 Yi -1 Vi i1 Vi
So an estimator is
— k D
Var(W(he)) = 7
=171

which in the limit gives

Var(W()) = 3 I8
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NELSON-AALEN ESTIMATOR FOR CUMULATIVE ROCOF W(

o Order all failure times as t; < tp < ... t,.
9 Let d;(t;) = # events in system j at t;.
e Let d(t;) = _,11 d;(t;) = # events in all systems at t;.

o Let V- _ 1 if system j is under observation at time t
B 0 otherwise
a Let ¥(t) = j 1 Yj(t) = # systems under observation at time t .
Then
d(rf
Under general assumptions: W Z
ti<t Yt
d(t;)

Assuming NHPP: Var W(t) = —
V)

2
Under general assumptions (MINITAB): Valer\‘/?(t) = Z { Z Yi(ti) |:dj(t,) — d(ri):| }

J=1
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SIMPLE EXAMPLE WITH THREE SYSTEMS

Sys. 1: | . . - |
0

ngl =5 1921 =12 531 =17 IT]_ =20
Sys. 2: | - - {
0 Slg =9 322 =23 T2 = 30
Sys. 3: | - {
0 313 =4 T3 — 10
Proj: f
45 9 12 17 23 t
Y(t): b : : - |
Y(t)=3 Y()=2 Y()=1
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COMPUTATIONS FOR THE NELSON-AALEN ESTIMATOR

—

1/Y(t) 1/Y(t)>2 W(t) VarW(t) SDW(t)

~

4 1/3 1/9 1/3 1/9 0.3333
5  1/3 1/9  2/3 2/9 0.4714
9 1/3 1/9 1 1/3 0.5774
12 1/2 1/4  3/2  7/12  0.7638
17 1/2 1/4 2 5/6 0.9129
23 1 1 3 11/6  1.3540
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ESTIMATED W(t) WITH CONFIDENCE LIMITS (NHPP)

ESTIMATED W (t) with 95% confidence limits (Nelson-Aalen)
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ESTIMATED W(t) WITH CONFIDENCE LIMITS (GENERAL)

Mean Cumulative Function for Time
95% CI
System Column in ID
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COMPUTATION BY GENERAL VARIANCE FORMULA

Compare with MINITAB Output:

o - GR-F G- UF -G

= — =0.27222
g1 !
— 17 11 1. 11)?
Var W = S I i
ar W(5) {3_0 3 +3_ 3_}
17 11 17, 11)?
+ {3_0_3_+3_0_3_}
1] 11 1. 11)?
Zl1== Zlo=Z2
* {3_ 3] T3] 3_}
= E:0.27222
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COMPUTATION BY GENERAL VARIANCE FORMULA

- 17T 11 17T 1 17 1712
Var W(9) = {3 0—§ +§ 1—5 +§ 0_3}
1. 11 1] 11 1. 11)?
= 10—3 10— +=2(1-2
+ {3_ 3_+3_ 3+3_ 3}
1. 11 1] 1] 1. 11)?
B Zlo=Z2 Zlop=Z
+ {3_ 3_+3_0 3+3_0 3}
=0
— 17 1] 1 1] 1[ 1] 1 11\?
1 11 1] 11 1 17 1 11)°
“lo—Z|+Zlo—Z|+Z1-Z{+Zlo=-2
+{3_ 373”733 3_+2[ 2]}
1. 11 1], 11 1. 11)?
- |11-= Zl0-Z|+=2l0-2
+{3_ 3_+3_ 3+3_ 3_}
1
= = =0.35362
8

Bo Lindqvist Slides 14 TMAA4275 LIFETIME ANALYSIS 35 /41

[



VALVESEAT DATA: DESCRIPTION

Valve Seat Replacement Times
(Nelson and Doganaksoy 1989)

Data collected from valve seats from a fleet of 41 diesel
engines (days of operation)

e Each engine has 16 valves

Does the replacement rate increase with age?

o How many replacement valves will be needed in the future?

e Can valve life in these systems be modeled as a renewal
process?
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VALVESEA WORKSHEET

VALVESEAT DATA

] TMA42T5valveseat MTW =
+ c2 c3 c4 c5 cé c7 c8 3
D Time
1 1 761
2 2 759
3 3 38
4 3 667
5 4 320
6 a 633
7 4 653
8 4 667
9 5 665
10 i 84
1 i 667
12 7 87
13 7 663
14 8 645
15 8 633
16 9 a2
17 9 633
18 10 651
19 1 258
20 11 328
21 1 377
22 1 621
23 1 630
24 12 61
25 12 539
26 12 648
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VALVESEAT DATA: MINITAB SETUP

Reliability/Survival > Repairable System Analysis
> Nonparametric Growth Curve

@ Dataare exact fallurefretirement times Retirement..
" Dataare interval failureiretirement times
Cost-Freq...

Variablest [Tine

o
i Qptions...
Svstem Information Storage...

@ System ID[1D

I

" Number of

I~ Bywariable:

Help cancel

X
Nenparametric Growth Curve - Retirement

ma

i

= Retirement time atlargest time for system
 Failure truncated systems
@ Time truncated systems [
" Retirement time defined by retirement columns

—

Help Cancel
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VALVESEAT DATA: MINITAB EVENT PLOT

Event Plot for Time
System Column in ID
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MINITAB O

TPUT

Nonparametric Growth Curve: Time

System: ID

Nonparametric Estimates

Table of Mean Cumulative Function

Mean

Cumulative

Time Function
61 0,0243%
7 0,04878
84 0,07317
87 0,09756
92 0,121585
98 0,14634
120 0,17073
139 0,19512
139 0,21951
165 0,2435%0
b1 0,2682%9
202 0,25268
206 0,31707
249 0,34146
254 0,36585
258 0,39024
265 0,41463
276 0,43902
298 0,46341
323 0,48780
326 0,51220
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Standard

Error
0,024091
0,033641
0,040670
0,046340
0,051105

0,109607
0,109740
0,108740

95% Normal CI

Lower Upper System
0,00352 0,16503 iz
0,01262 0,18848 14
0,02462 0,21750 6
0,0384¢ 0,24750 7
0,05364 0,27726 )
0,06987 0,30650 3
0,086%6 0,3351% 18
0,10479 0,36333 21
0,11411 0,42226 21
0,13305 0,44711 24
0,15251 0,471%¢ 28
0,17246 0,49672 35
0,18458 0,54467 28
0,20525 0,56807 25
0,22631 0,59143 13
0,24775 0,61468 11
0,26955 0,63780 27
0,28363 0,67955 13
0,2%150 0,73671 13
0,31387 0,75812 20

0,33656 0,7754% 4




VALVESEAT DATA: MINITAB ESTIMATION OF W(t)

Mean Cumulative Function for Time

95% CI
System Column in ID
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