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CENSORING

Lifetime data typically include censored data, meaning that:

@ some lifetimes are known to have occurred only within certain
intervals.

@ The remaining lifetimes are known exactly.

Categories of censoring:
@ right censoring
o left censoring

@ interval censoring
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TYPE | (RIGHT) CENSORING

n units put on test at time t = 0. Experiment stopped at time t = tp.

Unit no.

1

> Failure

X Failure
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GENERALIZED TYPE | CENSORING (“STAGGERED ENTRY")

Individuals enter the study at different times, and the terminal point of the

study is predetermined.

Unit no. Unit no.

1 } 1 1 C ]

2 [ 2 4 C

3 ; Failure 3 Failure

4 Failure 4 Failure

n } n { Censoring

0 0 to  Time
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TYPE Il CENSORING

n units are put on test at time t = 0.

The study continues until r individuals have failed, where r is some
predetermined integer (r < n).

Advantage: It could take a very long time for all items to fail. Also, the
statistical treatment of Type Il censored data is simpler because the joint
distribution of the order statistics is available.
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Type Il CENSORING

This is a mix of Type | and Type Il censoring. Choose both an end time tg
as for Type | censoring and an r < n as for Type Il censoring. Stop the
experiment at time tp or at the rth failure, whatever comes first.
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RANDOM RIGHT CENSORING (TYPE IV CENSORING)

@ For each unit we define

e T; to be the potential lifetime
e C; to be the potential censoring time

where
o T;, C; are independent random variables.
@ Then we observe the pair (Y}, d;), where

Y; = min(T;, G)

s o_ Ui Ti<G
' 0 if T.>G

Example of use: Cancer treatment, with T; being the time of death due to
this cancer; while C; is the time of death of another cause, or an accident,

or migration, etc.
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GENERAL FORMULATION OF RIGHT CENSORING

(Right censoring is the most common way of censoring. )

Right censoring of Type I, I, Ill, IV can all be represented as follows:
n units are observed, with potential i.i.d. lifetimes Ty, T, -+, T,. For
each /i, we observe a time Y; which is either the true lifetime T;, or a

censoring time C; < T;, in which case the true lifetime is “to the right” of
the observed time C;.

The observation from a unit is the pair (Y}, d;) where the censoring
indicator 9; is defined by

5 — 1 if Y; = T;, in which case we observe the true lifetime T;
" 10 if Y;=C;, in which case it is only known that T; > Y;

Bo Lindqvist Slides 5 TMAA4275 LIFETIME ANALYSIS 8 /26



INDEPENDENT CENSORING

Consider a situation where n individuals are followed from time t = 0. The
ith individual is followed until Y; = min(T;, C;), i.e. until either failure
(death) or censoring at time C;.

The ith individual is said to be at risk at time t if t < Y}, i.e. if the
individual has not yet been censored and have not failed.

A sensoring scheme is said to satisfy the property of independent
censoring if, at any time t, the individuals that are at risk are
representative for the distribution of T in the sense that their probaility of
failing in a small time interval (¢, t + h) is (in the limit as h tends to 0) is
z(t)h.

The censoring types we have considered so far all satisfy this independent
censoring property.
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NONPARAMETRIC ESTIMATION OF R(t)

We are interested in estimating the distribution of the lifetime T of some
equipment or the time to some given event in a medical context.

We have indicated how parametric models like exponential and Weibull
can be fitted to data.

Now we shall instead see how in particular R(t) can be estimated without
making parametric assumptions.

Thus, instead of having to restrict to estimation of one or two parameters,
we now have an infinite number of possible functions R(t) to choose from.
(Essentially, the only restriction is that it is decreasing, starts in 1 and
converges to 0 as t — 00.)
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NONPARAMETRIC ESTIMATION FOR NON-CENSORED DATA

In this case our observations are the exact failure times T1,..., T,,
assumed to be i.i.d. observations of a lifetime T.

Hence we can estimate R(t) = P(T > t) for a given t > 0 by the relative
proportion of lifetimes that exceed t:

number of T; > t

R(1) = :

This is called the empirical survivial function.

If we order the observations as T(;) < T() < --- < T(p), then IAR’(t) starts
at 1 for t = 0 and makes a downward jump of 1/n at T(y), a new
downward jump of 1/n at T(,y, and so on until it jumps from 1/n to 0 at
T(n)
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EXAMPLE OF EMPIRICAL SURVIVAL PLOT, R(t)

n = 16 observed lifetimes:

31.7, 39.2, 57.5, 65.0, 65.8, 70.0, 75.0, 75.2, 87.7, 88.3, 94.2, 101.7,
105.8, 109.2, 110.0, 130.0

1.0

0,8 -
0.6 -
0.4 4

0,2 -

0,0 T T T T T T '
0 20 40 60 B0 100 120 1

Timet
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EMPIRICAL SURVIVAL PLOT FOR BALL BEARING DATA

Survival Plot for Revolutions

Kaplan-Meier Method
Complete Data
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CENSORED DATA: KAPLAN-MEIER ESTIMATOR FOR R(t)

Consider n individuals, where the ith individual has potential lifetime T;
and potential censoring time C;. We observe the pair (Y, d;), where

Y; = min(T;, G)

5 — 1 if Y, =T;
o i Yi=¢G
Assume:
@ T1,T,,---, T, are independent and identically distributed with

common reliability function R(t).
@ The censoring mechanism satisfies the property of independent

censoring.
The estimator is constructed in the following.
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MAIN IDEA OF CONSTRUCTION

=0 u v, u, U u; t=1u,

N

Assume first that time is measured on a discrete scale with values
up=0<u <wup <---,s0that all T;, C;, Y; are among these.
Let t = uy,. Then

R(t): P(T >t)=P(T > um)
P(T>unNT>up_1N---NT>wNT>uiNT > up)
P(T>uw) -P(T>u1|T>uw) P(T>uw|T>uuNT > u)
P(T>u | T>u1NT>upn---NT>up):--
P(T>um| T>up10---NT > up)

=P(T>uw) P(T>w | T>u) P(T>w|T>uw)
P(T>u | T>u—1) - P(T>uUm | T>um1)

Idea: Estimate each factor P(T > u, | T > u,_1), from data (Y}, d;);
i=1,-,n
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CONSTRUCTION OF ESTIMATOR

AL \f/

ug t=uy tlme

Define:

@ n, = number at risk at time u,; i.e. number that can fail at u,;
counted immediately before u,.

@ d, = number failing at u, (those with Y = u,, § = 1)

@ ¢, = number censored at u, (those with Y = u,, 6 = 0); assumed to
be censored right after u,, and by convention after all failures at u,
(in practice in the interval following u,)
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CONSTRUCTION OF ESTIMATOR (CONT.)

AL \f/

u;

t =1, the

Note: The d;, ¢; are found directly from the data, while the n; are found
recursively as:

nop=n

ni=ng—dy— co

np=nr-1—dr1—C1
Then estimate,

d —d
P(T>u | T>up1)=1-P(T=u, |T>u_q)m1- 2 ="
n, ny
d — d
& P(T>u)=1-P(T=u)~1-—2="0"%
no no
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THE FINAL KM-ESTIMATOR

It follows that R(t) = P(T > t) can be estimated by

f\’(t): no—dg'nl—dl“‘n,—d,‘“nm—dm

no m ney Nm
Note that these factors are 1, whenever d, = 0. Thus

Roy= [ MO

ne
all u,<t
with dy>1

In practice we have continous time. But this case can be approximated by
making the grid u; < up < --- finer and finer.

Thus in general the KM-estimator is given by:

If T(l) < T(g) < -+, are the times with at least one failure, and n;, d; are,
respectively, the number at risk and the number of failures at T ;), then

f\’(t): H nj — d

I':T(,-)St
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GREENWOOD'S FORMULA FOR VARIANCE OF THE
KM-ESTIMATOR

— di

~ B2 a0
Var(R(t)) = (R(t)) . ni(nj — d;)

It can shown that for large n, R(t) is approximately normally distributed,

Thus an approximate 95% confidence interval can be obtained for each t
by

— —

P(R(t) —1.96 - SD(R(t)) < R(t) < R(t) +1.96 - SD(R(t)))
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HOW DOES MINITAB COMPUTE THE ESTIMATE FOR MTTF?

Recall thet MTTF = [;° R(t)dt. Hence it seems natural to estimate
MTTF by MTTF = I R(t )dt.

At):Hn

O]

But - recall that

o If largest observed time is a failure time: the last factor is 0, so
Jo" R(t)dt is a finite number.
o If largest observed time is censored: the last factor is ~
the estimate R( ) is constant and positive from this t/me on, making
o A
Jo  R(t)dt =

But - MINITAB uses the common convention:

e largest observed time
MTTF = / R(t)dt
0

’>0 So
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KM-ESTIMATOR FOR CENSORED D

Row ¥ D
1 .7 1
2 39,2 1
3 57,5 1
4 85,0 0
5 65,8 1
8 70,0 1
7 75,0 0
8 75,2 0
9 87,5 0
10 88,3 0
11 94,2 0
12 101,7 0
13 105,8 1
14 109,2 0
16 110,0 1
i8 130,0 V]
Number Number Survival Standard 95,0} Normal CI
Time at Risk Failed Probability Error Lower Upper
31,7000 16 1 0,9375 0,0605 0,8189 1,0000
39,2000 15 1 0,8750 0,0827 0,7130 1,0000
57,5000 14 1 0,8135 0,0076 0,6213 1,0000
65,8000 12 1 0,7448 0,1105 0,5283  0,9613
70,0000 11 1 0,68771 0,1194 0,4431 0,0111
105, 8000 4 1 0,5078 0,1718 0,1711 0,8445
110,0000 2 1 0,2539 0,1990 0,0000 0,8440
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KM-PLOT FOR CENSORED DATA

Survival Plot for Y
Kaplan-Meier Method
Censoring Column in D

100 Table of Statistics
Mean 96.0661
Median 110
IQR =
80
E &0
D
b
T}
o
40
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0
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Y
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KM-PLOT WITH CONFIDENCE LIMITS

Survival Plot for Y
Kaplan-Meier Method - 95% CI
Censoring Column in D

100
Table of Statistics
Mean 960861
Median 110
80 IQR *
&0
E
D
7 L
-7}
& 4
20 L
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BREAST CANCER DATA (from Collett’s book)

Table 1.2 Survivael times of women with
tumours that were negatively or positively
stained with HPA.

Negative staining Positive staining
23 5 68
47 8 71
69 10 6%
70* 13 105*
T1* 13 107*

100* 24 109*
101%* 26 113
148 26 116*
181 31 118
198* 35 143
208* 40 154%
212* 41 162*
224* 48 188*
50 212%
59 217*
61 225*
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BREAST CANCER DATA: KM PLOTS (Collett)

Estimated survivor function

0.2 1

0ok . ‘ : : .

¢ 50 100 150 200 250

Survival time

Figure 2.9 Kaplan-Meier estimate of the survivor functions for women with tu-
mours that were posilively stained (—) and negatively stained (- - -).
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