
Chapter 5

Log-Linear Models for
Contingency Tables

In this chapter we study the application of Poisson regression models to
the analysis of contingency tables. This is perhaps one of the most popular
applications of log-linear models, and is based on the existence of a very
close relationship between the multinomial and Poisson distributions.

5.1 Models for Two-dimensional Tables

We start by considering the simplest possible contingency table: a two-by-
two table. However, the concepts to be introduced apply equally well to
more general two-way tables where we study the joint distribution of two
categorical variables.

5.1.1 The Heart Disease Data

Table 5.1 was taken from the Framingham longitudinal study of coronary
heart disease (Cornfield, 1962; see also Fienberg, 1977). It shows 1329 pa-
tients cross-classified by the level or their serum cholesterol (below or above
260) and the presence or absence of heart disease.

There are various sampling schemes that could have led to these data,
with consequences for the probability model one would use, the types of
questions one would ask, and the analytic techniques that would be em-
ployed. Yet, all schemes lead to equivalent analyses. We now explore several
approaches to the analysis of these data.
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Table 5.1: Serum Cholesterol and Heart Disease

Serum Heart Disease Total
Cholesterol Present Absent
< 260 51 992 1043
260+ 41 245 286
Total 92 1237 1329

5.1.2 The Multinomial Model

Our first approach will assume that the data were collected by sampling 1329
patients who were then classified according to cholesterol and heart disease.
We view these variables as two responses, and we are interested in their joint
distribution. In this approach the total sample size is assumed fixed, and all
other quantities are considered random.

We will develop the random structure of the data in terms of the row and
column variables, and then note what this implies for the counts themselves.
Let C denote serum cholesterol and D denote heart disease, both discrete
factors with two levels. More generally, we can imagine a row factor with I
levels indexed by i and a column factor with J levels indexed by j, forming
an I × J table. In our example I = J = 2.

To describe the joint distribution of these two variables we let πij denote
the probability that an observation falls in row i and column j of the table.
In our example words, πij is the probability that serum cholesterol C takes
the value i and heart disease D takes the value j. In symbols,

πij = Pr{C = i,D = j}, (5.1)

for i = 1, 2, . . . , I and j = 1, 2, . . . , J . These probabilities completely describe
the joint distribution of the two variables.

We can also consider the marginal distribution of each variable. Let πi.

denote the probability that the row variable takes the value i, and let π.j

denote the probability that the column variable takes the value j. In our
example πi. and π.j represent the marginal distributions of serum cholesterol
and heart disease. In symbols,

πi. = Pr{C = i} and π.j = Pr{D = j}. (5.2)

Note that we use a dot as a placeholder for the omitted subscript.
The main hypothesis of interest with two responses is whether they are

independent. By definition, two variables are independent if (and only if)
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their joint distribution is the product of the marginals. Thus, we can write
the hypothesis of independence as

H0 : πij = πi.π.j (5.3)

for all i = 1, . . . , I and j = 1, . . . , J . The question now is how to estimate
the parameters and how to test the hypothesis of independence.

The traditional approach to testing this hypothesis calculates expected
counts under independence and compares observed and expected counts us-
ing Pearson’s chi-squared statistic. We adopt a more formal approach that
relies on maximum likelihood estimation and likelihood ratio tests. In order
to implement this approach we consider the distribution of the counts in the
table.

Suppose each of n observations is classified independently in one of the
IJ cells in the table, and suppose the probability that an observation falls
in the (i, j)-th cell is πij . Let Yij denote a random variable representing
the number of observations in row i and column j of the table, and let yij

denote its observed value. The joint distribution of the counts is then the
multinomial distribution, with

Pr{Y = y} =
n!

y11!y12!y21!y22!
πy11

11 πy12
12 πy21

21 πy22
22 , (5.4)

where Y is a random vector collecting all four counts and y is a vector
of observed values. The term to the right of the fraction represents the
probability of obtaining y11 observations in cell (1,1), y12 in cell (1,2), and
so on. The fraction itself is a combinatorial term representing the number
of ways of obtaining y11 observations in cell (1,1), y12 in cell (1,2), and so
on, out of a total of n. The multinomial distribution is a direct extension
of the binomial distribution to more than two response categories. In the
present case we have four categories, which happen to represent a two-by-
two structure. In the special case of only two categories the multinomial
distribution reduces to the familiar binomial.

Taking logs and ignoring the combinatorial term, which does not depend
on the parameters, we obtain the multinomial log-likelihood function, which
for a general I × J table has the form

log L =
I∑

i=1

J∑
j=1

yij log(πij). (5.5)

To estimate the parameters we need to take derivatives of the log-likelihood
function with respect to the probabilities, but in doing so we must take into
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account the fact that the probabilities add up to one over the entire table.
This restriction may be imposed by adding a Lagrange multiplier, or more
simply by writing the last probability as the complement of all others. In
either case, we find the unrestricted maximum likelihood estimate to be the
sample proportion:

π̂ij =
yij

n
.

Substituting these estimates into the log-likelihood function gives its unre-
stricted maximum.

Under the hypothesis of independence in Equation 5.3, the joint proba-
bilities depend on the margins. Taking derivatives with respect to πi. and
π.j , and noting that these are also constrained to add up to one over the
rows and columns, respectively, we find the m.l.e.’s

π̂i. =
yi.

n
and π̂.j =

y.j

n
,

where yi. =
∑

j yij denotes the row totals and y.j denotes the column totals.
Combining these estimates and multiplying by n to obtain expected counts
gives

µ̂ij =
yi.y.j

n
,

which is the familiar result from introductory statistics. In our example, the
expected frequencies are

µ̂ij =

(
72.2 9970.8
19.8 266.2

)
.

Substituting these estimates into the log-likelihood function gives its maxi-
mum under the restrictions implied by the hypothesis of independence. To
test this hypothesis, we calculate twice the difference between the unre-
stricted and restricted maxima of the log-likelihood function, to obtain the
deviance or likelihood ratio test statistic

D = 2
∑

i

∑
j

yij log(
yij

µ̂ij
). (5.6)

Note that the numerator and denominator inside the log can be written in
terms of estimated probabilities or counts, because the sample size n cancels
out. Under the hypothesis of independence, this statistic has approximately
in large samples a chi-squared distribution with (I − 1)(J − 1) d.f.

Going through these calculations for our example we obtain a deviance
of 26.43 with one d.f. Comparison of observed and fitted counts in terms of
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Pearson’s chi-squared statistic gives 31.08 with one d.f. Clearly, we reject
the hypothesis of independence, concluding that heart disease and serum
cholesterol level are associated.

5.1.3 The Poisson Model

An alternative model for the data in Table 5.1 is to treat the four counts as
realizations of independent Poisson random variables. A possible physical
model is to imagine that there are four groups of people, one for each cell in
the table, and that members from each group arrive randomly at a hospital
or medical center over a period of time, say for a health check. In this model
the total sample size is not fixed in advance, and all counts are therefore
random.

Under the assumption that the observations are independent, the joint
distribution of the four counts is a product of Poisson distributions

Pr{Y = y} =
∏
i

∏
j

µ
yij

ij e−µij

yij !
. (5.7)

Taking logs we obtain the usual Poisson log-likelihood from Chapter 4.
In terms of the systematic structure of the model, we could consider three

log-linear models for the expected counts: the null model, the additive model
and the saturated model. The null model would assume that all four kinds
of patients arrive at the hospital or health center in the same numbers. The
additive model would postulate that the arrival rates depend on the level
of cholesterol and the presence or absence of heart disease, but not on the
combination of the two. The saturated model would say that each group has
its own rate or expected number of arrivals.

At this point you may try fitting the Poisson additive model to the four
counts in Table 5.1, treating cholesterol and heart disease as factors or dis-
crete predictors. You will discover that the deviance is 26.43 on one d.f. (four
observations minus three parameters, the constant and the coefficients of two
dummies representing cholesterol and heart disease). If you print the fitted
values you will discover that they are exactly the same as in the previous
subsection.

This result, of course, is not a coincidence. Testing the hypothesis of
independence in the multinomial model is exactly equivalent to testing the
goodness of fit of the Poisson additive model. A rigorous proof of this result
is beyond the scope of these notes, but we can provide enough information
to show that the result is intuitively reasonable and to understand when it
can be used.
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First, note that if the four counts have independent Poisson distributions,
their sum is distributed Poisson with mean equal to the sum of the means.
In symbols, if Yij ∼ P (µij) then the total Y.. =

∑
i

∑
j Yij is distributed

Poisson with mean µ.. =
∑

i

∑
j µij . Further, the conditional distribution of

the four counts given their total is multinomial with probabilities

πij = µij/n,

where we have used n for the observed total y.. =
∑

i,j yij . This result
follows directly from the fact that the conditional distribution of the counts
Y given their total Y.. can be obtained as the ratio of the joint distribution
of the counts and the total (which is the same as the joint distribution of
the counts, which imply the total) to the marginal distribution of the total.
Dividing the joint distribution given in Equation 5.7 by the marginal, which
is Poisson with mean µ.., leads directly to the multinomial distribution in
Equation 5.4.

Second, note that the systematic structure of the two models is the same.
In the model of independence the joint probability is the product of the
marginals, so taking logs we obtain

log πij = log πi. + log π.j ,

which is exactly the structure of the additive Poisson model

log µij = η + αi + βj .

In both cases the log of the expected count depends on the row and the
column but not the combination of the two. In fact, it is only the constraints
that differ between the two models. The multinomial model restricts the
joint and marginal probabilities to add to one. The Poisson model uses the
reference cell method and sets α1 = β1 = 0.

If the systematic and random structure of the two models are the same,
then it should come as no surprise that they produce the same fitted values
and lead to the same tests of hypotheses. There is only one aspect that we
glossed over: the equivalence of the two distributions holds conditional on n,
but in the Poisson analysis the total n is random and we have not conditioned
on its value. Recall, however, that the Poisson model, by including the
constant, reproduces exactly the sample total. It turns out that we don’t
need to condition on n because the model reproduces its exact value anyway.

The morale of this long-winded story is that we do not need to bother
with multinomial models and can always resort to the equivalent Poisson
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model. While the gain is trivial in the case of a two-by-two table, it can be
very significant as we move to cross-classifications involving three or more
variables, particularly as we don’t have to worry about maximizing the multi-
nomial likelihood under constraints. The only trick we need to learn is how
to translate the questions of independence that arise in the multinomial
context into the corresponding log-linear models in the Poisson context.

5.1.4 The Product Binomial*

(On first reading you may wish to skip this subsection and the next and
proceed directly to the discussion of three-dimensional tables in Section 5.2.)

There is a third sampling scheme that may lead to data such as Table 5.1.
Suppose that a decision had been made to draw a sample of 1043 patients
with low serum cholesterol and an independent sample of 286 patients with
high serum cholesterol, and then examine the presence or absence of heart
disease in each group.

Interest would then focus on the conditional distribution of heart disease
given serum cholesterol level. Let πi denote the probability of heart disease
at level i of serum cholesterol. In the notation of the previous subsections,

πi = Pr{D = 1|C = i} =
πi1

πi.
,

where we have used the fact that the conditional probability of falling in
column one given that you are in row i is the ratio of the joint probability
πi1 of being in cell (i,1) to the marginal probability πi. of being in row i.

Under this scheme the row margin would be fixed in advance, so we would
have n1 observations with low cholesterol and n2 with high. The number of
cases with heart disease in category y of cholesterol, denoted Yi1, would then
have a binomial distribution with parameters πi and ni independently for
i = 1, 2. The likelihood function would then be a product of two binomials:

Pr{Y = y} =
n1!

y11!y12!
πy11

1 (1− π1)y12
n2!

y21!y22!
πy21

2 (1− π2)y22 , (5.8)

where we have retained double subscripts and written yi1 and yi2 instead of
the more familiar yi and ni − yi to facilitate comparison with Equations 5.4
and 5.7.

The main hypothesis of interest would be the hypothesis of homogeneity,
where the probability of heart disease is the same in the two groups:

Ho : π1 = π2.
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To test this hypothesis you might consider fitting logistic regression models
to the data, treating heart disease as the response and serum cholesterol
as the predictor, and working with two observations representing the two
groups. If you try this, you will discover that the deviance for the null
model, which can be interpreted as a likelihood ratio test of the hypothesis
of homogeneity, is 26.43 with one d.f., and coincides with the multinomial
and Poisson deviances of the previous two subsections.

Again, this is no coincidence, because the random and systematic com-
ponents of the models are equivalent. The product binomial distribution in
Equation 5.8 can be obtained starting from the assumption that the four
counts Yij are independent Poisson with means µij , and then conditioning
on the totals Yi. =

∑
j Yij , which are Poisson with means µi. =

∑
j µij ,

for i = 1, 2. Taking the ratio of the joint distribution of the counts to
the marginal distribution of the two totals leads to the product binomial in
Equation 5.8 with πi = µi1/µi..

Similarly, the hypothesis of homogeneity turns out to be equivalent to
the hypothesis of independence and hence the additive log-linear model. To
see this point note that if two variables are independent, then the conditional
distribution of one given the other is the same as its marginal distribution.
In symbols, if πij = πi.π.j then the conditional probability, which in general
is πj|i = πij/πi., simplifies to πj|i = π.j , which does not depend on i. In
terms of our example, under independence or homogeneity the conditional
probability of heart disease is the same for the two cholesterol groups.

Again, note that the binomial and Poisson models are equivalent condi-
tioning on the row margin, but in fitting the additive log-linear model we
did not impose any conditions. Recall, however, that the Poisson model, by
treating serum cholesterol as a factor, reproduces exactly the row margin of
the table. Thus, it does not matter that we do not condition on the margin
because the model reproduces its exact value anyway.

The importance of this result is that the results of our analyses are in
fact independent of the sampling scheme.

• If the row margin is fixed in advance we can treat the row factor as
a predictor and the column factor as a response and fit a model of
homogeneity using the product binomial likelihood.

• If the total is fixed in advance we can treat both the row and column
factors as responses and test the hypothesis of independence using the
multinomial likelihood.

• Or we can treat all counts as random and fit an additive log-linear
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model using the Poisson likelihood.

Reassuringly, the results will be identical in all three cases, both in terms of
fitted counts and in terms of the likelihood ratio statistic.

Note that if the total is fixed and the sampling scheme is multinomial
we can always condition on a margin and use binomial models, the choice
being up to the investigator. This choice will usually depend on whether
one wishes to treat the two variables symmetrically, assuming they are both
responses and studying their correlation, or asymmetrically, treating one as
a predictor and the other as a response in a regression framework.

If the row margin is fixed and the sampling scheme is binomial then we
must use the product binomial model, because we can not estimate the joint
distribution of the two variables without further information.

5.1.5 The Hypergeometric Distribution*

There is a fourth distribution that could apply to the data in Table 5.1,
namely the hypergeometric distribution. This distribution arises from treat-
ing both the row and column margins as fixed. I find it hard to imagine a
sampling scheme that would lead to fixed margins, but one could use the
following conditioning argument.

Suppose that the central purpose of the enquiry is the possible association
between cholesterol and heart disease, as measured, for example, by the odds
ratio. Clearly, the total sample size has no information about the odds ratio,
so it would make sense to condition on it. Perhaps less obviously, the row and
column margins carry very little information about the association between
cholesterol and heart disease as measured by the odds ratio. It can therefore
be argued that it makes good statistical sense to condition on both margins.

If we start from the assumption that the four counts are independent
Poisson with means µij , and then condition on the margins Yi. and Y.j as well
as the total Y.. (being careful to use Y1., Y.1 and Y.. to maintain independence)
we obtain the hypergeometric distribution, where

Pr{Y = y} =
y.1!

y11!y21!
y.2!

y21!y22!
/

n!
y1.!y2.!

.

In small samples this distribution is the basis of the so-called Fisher’s exact
test for the two-by-two table. McCullagh and Nelder (1989, Sections 7.3–7.4)
discuss a conditional likelihood ratio test that differs from the unconditional
one. The question of whether one should use conditional or unconditional
tests is still a matter of controversy, see for example Yates (1934, 1984). We
will not consider the hypergeometric distribution further.
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5.2 Models for Three-Dimensional Tables

We now consider in more detail linear models for three-way contingency ta-
bles, focusing on testing various forms of complete and partial independence
using the equivalent Poisson models.

5.2.1 Educational Aspirations in Wisconsin

Table 5.2 classifies 4991 Wisconsin male high school seniors according to
socio-economic status (low, lower middle, upper middle, and high), the de-
gree of parental encouragement they receive (low and high) and whether or
not they have plans to attend college (no, yes). This is part of a larger table
found in Fienberg (1977, p. 101).

Table 5.2: Socio-economic Status, Parental Encouragement and
Educational Aspirations of High School Seniors

Social Parental College Plans Total
Stratum Encouragement No Yes
Lower Low 749 35 784

High 233 133 366
Lower Middle Low 627 38 665

High 330 303 633
Upper Middle Low 420 37 457

High 374 467 841
Higher Low 153 26 179

High 266 800 1066
Total 3152 1938 4991

In our analysis of these data we will view all three variables as responses,
and we will study the extent to which they are associated. In this process
we will test various hypotheses of complete and partial independence.

Let us first introduce some notation. We will use three subscripts to
identify the cells in an I×J×K table, with i indexing the I rows, j indexing
the J columns and k indexing the K layers. In our example I = 4, J = 2,
and K = 2 for a total of 16 cells.

Let πijk denote the probability that an observation falls in cell (i, j, k).
In our example, this cell represents category i of socio-economic status (S),
category j of parental encouragement (E) and category k of college plans
(P). These probabilities define the joint distribution of the three variables.
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We also let yijk denote the observed count in cell (i, j, k), which we treat
as a realization of a random variable Yijk having a multinomial or Poisson
distribution.

We will also use the dot convention to indicate summing over a subscript,
so πi.. is the marginal probability that an observation falls in row i and
yi.. is the number of observations in row i. The notation extends to two
dimensions, so πij. is the marginal probability that an observation falls in
row i and columnj and yij. is the corresponding count.

5.2.2 Deviances for Poisson Models

In practice we will treat the Yijk as independent Poisson random variables
with means µijk = nπijk, and we will fit log-linear models to the expected
counts.

Table 5.3 lists all possible models of interest in the Poisson context that
include all three variables, starting with the three-factor additive model
S + E + P on status, encouragement and plans, and moving up towards
the saturated model SEP . For each model we list the abbreviated model
formula, the deviance and the degrees of freedom.

Table 5.3: Deviances for Log-linear Models
Fitted to Educational Aspirations Data

Model Deviance d.f.
S + E + P 2714.0 10
SE + P 1877.4 7
SP + E 1920.4 7
S + EP 1092.0 9
SE + SP 1083.8 4
SE + EP 255.5 6
SP + EP 298.5 6
SE + SP + EP 1.575 3

We now switch to a multinomial context, where we focus on the joint dis-
tribution of the three variables S, E and P . We consider four different types
of models that may be of interest in this case, and discuss their equivalence
to one of the above Poisson models.
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5.2.3 Complete Independence

The simplest possible model of interest in the multinomial context is the
model of complete independence, where the joint distribution of the three
variables is the product of the marginals. The corresponding hypothesis is

H0 : πijk = πi..π.j.π..k, (5.9)

where πi.. is the marginal probability that an observation falls in row i, and
π.j. and π..k are the corresponding column and layer margins.

Under this model the logarithms of the expected cell counts are given by

log µijk = log n + log πi.. + log π.j. + log π..k,

and can be seen to depend only on quantities indexed by i, j and k but none
of the combinations (such as ij, jk or ik). The notation is reminiscent of
the Poisson additive model, where

log µijk = η + αi + βj + γk,

and in fact the two formulations can be shown to be equivalent, differing
only on the choice of constraints: the marginal probabilities add up to one,
whereas the main effects in the log-linear model satisfy the reference cell
restrictions.

The m.l.e.’s of the probabilities under the model of complete indepen-
dence turn out to be, as you might expect, the products of the marginal
proportions. Therefore, the m.l.e.’s of the expected counts under complete
independence are

µ̂ijk = yi..y.j.y..k/n2.

Note that the estimates depend only on row, column and layer totals, as one
would expect from considerations of marginal sufficiency.

To test the hypothesis of complete independence we compare the max-
imized multinomial log-likelihoods under the model of independence and
under the saturated model. Because of the equivalence between multino-
mial and Poisson models, however, the resulting likelihood ratio statistic is
exactly the same as the deviance for the Poisson additive model.

In our example the deviance of the additive model is 2714 with 10 d.f.,
and is highly significant. We therefore conclude that the hypothesis that
social status, parental encouragement and college plans are completely in-
dependent is clearly untenable.
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5.2.4 Block Independence

The next three log-linear models in Table 5.3 involve one of the two-factor
interaction terms. As you might expect from our analysis of a two-by-two ta-
ble, the presence of an interaction term indicates the existence of association
between those two variables.

For example the model SE + P indicates that S and E are associated,
but are jointly independent of P . In terms of our example this hypothesis
would state that social status and parental encouragement are associated
with each other, and are jointly independent of college plans.

Under this hypothesis the joint distribution of the three variables factors
into the product of two blocks, representing S and E on one hand and P on
the other. Specifically, the hypothesis of block independence is

H0 : πijk = πij.π..k. (5.10)

The m.l.e.’s of the cell probabilities turn out to be the product of the SE
and P marginal probabilities and can be calculated directly. The m.l.e.’s of
the expected counts under block independence are then

µ̂ijk = yij.y..k/n.

Note the similarity between the structure of the probabilities and that of the
estimates, depending on the combination of levels of S and E on the one
hand, and levels of P on the other.

To test the hypothesis of block independence we compare the maxi-
mized multinomial log-likelihood under the restrictions imposed by Equation
5.10 with the maximized log-likelihood for the saturated model. Because of
the equivalence between multinomial and Poisson models, however, the test
statistic would be exactly the same as the deviance for the model SE + P .

In our example the deviance for the model with the SE interaction and
a main effect of P is 1877.4 on 7 d.f., and is highly significant. We therefore
reject the hypothesis that college plans are independent of social status and
parental encouragement.

There are two other models with one interaction term. The model SP+E
has a deviance of 1920.4 on 7 d.f., so we reject the hypothesis that parental
encouragement is independent of social status and college plans. The model
EP + S is the best fitting of this lot, but the deviance of 1092.0 on 9 d.f. is
highly significant, so we reject the hypothesis that parental encouragement
and college plans are associated but are jointly independent of social status.
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5.2.5 Partial Independence

The next three log-linear models in Table 5.3 involve two of the three possible
two-factor interactions, and thus correspond to cases where two pairs of
categorical variables are associated. For example the log-linear model SE +
SP corresponds to the case where S and E are associated and so are S
and P . In terms of our example we would assume that social status affects
both parental encouragement and college plans. The figure below shows this
model in path diagram form.

S ��
���

�*

H
HHH

HHj

E

P

Note that we have assumed no direct link between E and P , that is, the
model assumes that parental encouragement has no direct effect on college
plans. In a two-way crosstabulation these two variables would appear to be
associated because of their common dependency on social status S. However,
conditional on social status S, parental encouragement E and college plans
P would be independent.

Thus, the model assumes a form of partial or conditional independence,
where the joint conditional distribution of EP given S is the product of the
marginal conditional distributions of E given S and P given S. In symbols,

Pr{E = j, P = k|S = i} = Pr{E = j|S = i}Pr{P = k|S = i}.

To translate this statement into unconditional probabilities we write the con-
ditional distributions as the product of the joint and marginal distributions,
so that the above equation becomes

Pr{E = j, P = k, S = i}
Pr{S = i}

=
Pr{E = j, S = i}

Pr{S = i}
Pr{P = k, S = i}

Pr{S = i}
,

from which we see that

Pr{S = i, E = j, P = k} =
Pr{S = i, E = j}Pr{S = i, P = k}

Pr{S = i}
,

or, in our usual notation,
πijk =

πij.πi.k

πi..
. (5.11)
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The m.l.e.’s of the expected cell counts have a similar structure and depend
only on the SE and SP margins:

µ̂ijk =
yij.yi.k

yi..
.

To test the hypothesis of partial independence we need to compare the multi-
nomial log-likelihood maximized under the constraints implied by Equation
5.11 with the unconstrained maximum. Because of the equivalence between
multinomial and Poisson models, however, the resulting likelihood ratio test
statistic is the same as the deviance of the model SE + SP .

In terms of our example, the deviance of the model with SE and SP
interactions is 1083.8 on 4 d.f., and is highly significant. We therefore reject
the hypothesis that parental encouragement and college plans are indepen-
dent within each social stratum.

There are two other models with two interaction terms. Although both
of them have smaller deviances than any of the models considered so far,
they still show significant lack of fit. The model SP + EP has a deviance of
298.5 on 6 d.f., so we reject the hypothesis that given college plans P social
status S and parental encouragement E are mutually independent. The best
way to view this model in causal terms is by assuming that S and E are
unrelated and both have effects on P , as shown in the path diagram below.

S HHH
HHHj

E ���
���* P

The model SE + EP has a deviance of 255.5 on 6 d.f., and leads us to
reject the hypothesis that given parental encouragement E, social class S
and college plans P are independent. In causal terms one might interpret
this model as postulating that social class affects parental encouragement
which in turn affects college plans, with no direct effect of social class on
college plans.

S

?
E ��

���
�* P

Note that all models consider so far have had explicit formulas for the m.l.e.’s,
so no iteration has been necessary and we could have calculated all test
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statistics using the multinomial likelihood directly. An interesting property
of the iterative proportional fitting algorithm mentioned earlier, and which is
used by software specializing in contingency tables, is that it converges in one
cycle in all these cases. The same is not true of the iteratively re-weighted
least squares algorithm used in Poisson regression, which will usually require
a few iterations.

5.2.6 Uniform Association

The only log-linear model remaining in Table 5.3 short of the saturated model
is the model involving all three two-factor interactions. In this model we have
a form of association between all pairs of variables, S and E, S and P , as well
as E and P . Thus, social class is associated with parental encouragement
and with college plans, and in addition parental encouragement has a direct
effect on college plans.

How do we interpret the lack of a three-factor interaction? To answer
this question we start from what we know about interaction effects in general
and adapt it to the present context, where interaction terms in models for
counts represent association between the underlying classification criteria.
The conclusion is that in this model the association between any two of the
variables is the same at all levels of the third.

This model has no simple interpretation in terms of independence, and
as a result we cannot write the structure of the joint probabilities in terms
of the two-way margins. In particular

πijk is not
πij.πi.kπ.jk

πi..π.j.π..k
,

nor any other simple function of the marginal probabilities.
A consequence of this fact is that the m.l.e.’s cannot be written in closed

form and must be calculated using an iterative procedure. They do, however,
depend only on the three two-way margins SE, SP and EP .

In terms of our example, the model SP + SE + EP has a deviance
of 1.6 on three d.f., and therefore fits the data quite well. We conclude
that we have no evidence against the hypothesis that all three variables are
associated, but the association between any two is the same at all levels of the
third. In particular, we may conclude that the association between parental
encouragement E and college plans P is the same in all social strata.

To further appreciate the nature of this model, we give the fitted values
in Table 5.4. Comparison of the estimated expected counts in this table with
the observed counts in Table 5.2 highlights the goodness of fit of the model.
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Table 5.4: Fitted Values for Educational Aspirations Data
Based on Model of Uniform Association SE + SP + EP

Social Parental College Plans
Stratum Encouragement No Yes
Lower Low 753.1 30.9

High 228.9 137.1
Lower Middle Low 626.0 39.0

High 331.0 302.0
Upper Middle Low 420.9 36.1

High 373.1 467.9
Higher Low 149.0 30.0

High 270.0 796.0

We can also use the fitted values to calculate measures of association
between parental encouragement E and college plans P for each social stra-
tum. For the lowest group, the odds of making college plans are barely one
to 24.4 with low parental encouragement, but increase to one to 1.67 with
high encouragement, giving an odds ratio of 14.6. If you repeat the calcula-
tion for any of the other three social classes you will find exactly the same
ratio of 14.6.

We can verify that this result follows directly from the lack of a three-
factor interaction in the model. The logs of the expected counts in this
model are

log µijk = η + αi + βj + γk + (αβ)ij + (αγ)ik + (βγ)jk.

The log-odds of making college plans in social stratum i with parental en-
couragement j are obtained by calculating the difference in expected counts
between k = 2 and k = 1, which is

log(µij2/µij1) = γ2 − γ1 + (αγ)i2 − (iαγ)i1 + (βγ)j2 − (βγ)j1,

because all terms involving only i, j or ij cancel out. Consider now the
difference in log-odds between high and low encouragement, i.e. when j = 2
and j = 1:

log(
µi22/µi21

µi12/µi11
) = (βγ)22 − (βγ)21 − (βγ)12 + (βγ)11,

which does not depend on i. Thus, we see that the log of the odds ratio is
the same at all levels of S. Furthermore, under the reference cell restrictions
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all interaction terms involving level one of any of the factors would be set to
zero, so the log of the odds ratio in question is simply (βγ)22. For the model
with no three-factor interaction the estimate of this parameter is 2.683 and
exponentiating this value gives 14.6.

5.2.7 Binomial Logits Revisited

Our analysis so far has treated the three classification criteria as responses,
and has focused on their correlation structure. An alternative approach
would treat one of the variables as a response and the other two as predic-
tors in a regression framework. We now compare these two approaches in
terms of our example on educational aspirations, treating college plans as
a dichotomous response and socio-economic status and parental encourage-
ment as discrete predictors.

To this end, we treat each of the 16 rows in Table 5.2 as a group. Let Yij

denote the number of high school seniors who plan to attend college out of the
nij seniors in category i of socio-economic status and category j of parental
encouragement. We assume that these 16 counts are independent and have
binomial distributions with Yij ∼ B(nij , πij), where πij is the probability of
making college plans We can then fit logistic regression models to study how
the probabilities depend on social stratum and parental encouragement.

Table 5.5: Deviances por Logistic Regression Models
Fitted to the Educational Aspirations Data

Model Deviance d.f.
Null 1877.4 7
S 1083.8 4
E 255.5 6
S + E 1.575 3

Table 5.5 shows the results of fitting four possible logit models of in-
terest, ranging from the null model to the additive model on socioeconomic
status (S) and parental encouragement (E). It is clear from these results that
both social class and encouragement have significant gross and net effects
on the probability of making college plans. The best fitting model is the
two-factor additive model, with a deviance of 1.6 on three d.f. Table 5.6
shows parameter estimates for the additive model.

Exponentiating the estimates we see that the odds of making college
plans increase five-fold as we move from low to high socio-economic status.
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Table 5.6: Parameter Estimates for Additive Logit Model
Fitted to the Educational Aspirations Data

Variable Category Estimate Std. Err.
Constant −3.195 0.119
Socio-economic low –
status lower middle 0.420 0.118

upper middle 0.739 0.114
high 1.593 0.115

Parental low –
encouragement high 2.683 0.099

Furthermore, in each social stratum, the odds of making college plans among
high school seniors with high parental encouragement are 14.6 times the odds
among seniors with low parental encouragement.

The conclusions of this analysis are consistent with those from the previ-
ous subsection, except that this time we do not study the association between
social stratification and parental encouragement, but focus on their effect on
making college plans. In fact it is not just the conclusions, but all esti-
mates and tests of significance, that agree. A comparison of the binomial
deviances in Table 5.5 with the Poisson deviances in Table 5.3 shows the
following ‘coincidences’:

log-linear model logit model
SE + P Null
SE + SP S
SE + EP E
SE + SP + EP S + E

The models listed as equivalent have similar interpretations if you translate
from the language of correlation analysis to the language of regression anal-
ysis. Note that all the log-linear models include the SE interaction, so they
allow for association between the two predictors. Also, all of them include
a main effect of the response P , allowing it to have a non-uniform distribu-
tion. The log-linear model with just these two terms assumes no association
between P and either S or E, and is thus equivalent to the null logit model.

The log-linear model with an SP interaction allows for an association
between S and P , and is therefore equivalent to the logit model where the
response depends only on S. A similar remark applies to the log-linear
model with an EP interaction. Finally, the log-linear model with all three
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two-factor interactions allows for associations between S and P , and between
E and P , and assumes that in each case the strength of association does not
depend on the other variable. But this is exactly what the additive logit
model assumes: the response depends on both S and E, and the effect of
each factor is the same at all levels of the other predictor.

In general, log-linear and logit models are equivalent as long as the log-
linear model

• is saturated on all factors treated as predictors in the logit model,
including all possible main effects and interactions among predictors
(in our example SE),

• includes a main effect for the factor treated as response (in our example
P ), and

• includes a two-factor (or higher order) interaction between a predictor
and the response for each main effect (or interaction) included in the
logit model (in our example it includes SP for the main effect of S,
and son on).

This equivalence extends to parameter estimates as well as tests of sig-
nificance. For example, multiplying the fitted probabilities based on the
additive logit model S + E by the sample sizes in each category of social
status and parental encouragement leads to the same expected counts that
we obtained earlier from the log-linear model SE+SP +EP . An interesting
consequence of this fact is that one can use parameter estimates based on a
log-linear model to calculate logits, as we did in Section 5.2.6, and obtain the
same results as in logistic regression. For example the log of the odds ratio
summarizing the effect of parental encouragement on college plans within
each social stratum was estimated as 2.683 in the previous subsection, and
this value agrees exactly with the estimate on Table 5.6.

In our example the equivalence depends crucially on the fact that the log-
linear models include the SE interaction, and therefore reproduce exactly
the binomial denominators used in the logistic regression. But what would
have happened if the SE interaction had turned out to be not significant?
There appear to be two schools of thought on this matter.

Bishop et al. (1975), in a classic boook on the multivariate analysis of
qualitative data, emphasize log-linear models because they provide a richer
analysis of the structure of association among all factors, not just between
the predictors and the response. If the SE interaction had turned out to be
not significant they would probably leave it out of the model. They would
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still be able to translate their parameter estimates into fitted logits, but
the results would not coincide exactly with the logistic regression analysis
(although they would be rather similar if the omitted interaction is small.)

Cox (1972), in a classic book on the analysis of binary data, emphasizes
logit models. He argues that if your main interest is on the effects of two
variables, say S and E on a third factor, say P , then you should condition
on the SE margin. This means that if you are fitting log-linear models
with the intention of understanding effects on P , you would include the SE
interaction even if it is not significant. In that case you would get exactly
the same results as a logistic regression analysis, which is probably what you
should have done in the first place if you wanted to study specifically how
the response depends on the predictors.


