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Abstract

Within reliability theory, identifiability problems arise through competing

risks. If we have a series system of several components, and if that system is

replaced or repaired to as good as new on failure, then the different component

failures represent competing risks for the system. It is well known that

the underlying component failure distributions cannot be estimated from the

observable data (failure time and identity of failed component) without non-

testable assumptions such as independence.

In practice many systems are not subject to the “as good as new” repair regime.

Hence the objective of this paper is to contrast the identifiability issues arising

for different repair regimes.

We consider the problem of identifying a model within a given class of

probabilistic models for the system. Different models corresponding to different

repair strategies are considered: a partial repair model where only the failing

component is repaired; perfect repair, where all components are as good as

new after a failure; and minimal repair, where components are only minimally

repaired at failures. We show that on the basis of observing a single socket,

the partial repair model is identifiable, while the perfect and minimal repair

models are not.

Keywords: Competing risks; Identifiability; Reliability; Marked point process;

Ergodicity; Markov chain; Joint survival distribution

∗ Postal address: Department of Management Science, Strathclyde University, Graham Hills Building,

40 George Street, Glasgow, Scotland. Email: tim@mansci.strath.ac.uk
∗∗ Postal address: Department of Mathematical Sciences, Norwegian University of Science and

Technology, N-7491 Trondheim, Norway. Email: bo@math.ntnu.no

1



2 Tim Bedford and Bo H Lindqvist

2000 Mathematics Subject Classification: Primary 60J27, 90B25

Secondary 60G35, 37A30, 60K10

1. Introduction and basic model

Consider a series system with n components, denoted C1, C2, . . . , Cn. Let the

system be observed from time t = 0 and suppose that upon each failure the system

is immediately repaired (in some way to be specified) and put into operation. Denote

the successive failure times by T1, T2, . . .. Assume that at each system failure we can

identify a unique failing component. Thus we observe a marked point process (Tj , Zj)

where Zj = i if component Ci fails at time Tj . At failures Tj the components are

repaired or replaced according to given repair strategies. Various such strategies will

be considered.

Since the ideas are well described in the case of two components, we shall let n = 2

in most of our discussion.

We shall be concerned with observations arising from a single system or socket.

This means that we observe part of a single realisation of a marked point process.

When all the components are repaired to as good as new on the failure of a single

component then we actually have a renewal process. A single realisation of the marked

point process gives rise to an infinite number of realisations of the renewal process.

This does not enable us to identify the joint distribution of the component lifetimes, or

even the marginal distributions, in general (see [2, 1]). The reason for this is that only

partial information about the joint distribution is observable. Only by making non-

testable assumptions about the model class we are dealing with are we able to identify

the marginals or the joint distribution. The classical approach to competing risks

is to assume that the competing risks are statistically independent of each other, in

which case we have identifiability as discussed in [2, 1]. More generally it is sometimes

possible to restrict the class of joint distributions under consideration so that the

problem becomes identifiable, but this is very application specific.

In the context of reliability, the assumption of a renewal process is a fairly strong

assumption. (In many cases it is plausible, for example in high reliability systems

where the cost of unscheduled maintenance is high, such as in the nuclear industry. In

other situations it is more questionable). The question then arises: do we still have
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identifiability problems when the renewal assumption does not hold? The purpose of

this paper is to discuss this question. To make a comparison, we contrast the renewal

model with two weaker models: Full repair of the failed component, and (weaker still)

minimal repair of the failed component.

We shall see that, in contrast to the renewal model, full repair of the failed compo-

nent enables us to identify the underlying model. The weaker model, supposing just

minimal repair of the failed component, is however again not identifiable.

1.1. Definition

The two components are assumed to have basic failure rates λ1(t), λ2(t), respectively,

but when working within the system, the lifetimes of the two components are coupled.

This is modelled by assuming that the conditional failure intensity of component C1

given the history is

ψ1(s1, s2) = λ1(s1) + λ1∗(s1, s2) (1)

where s1, s2 are the ages of the components C1 and C2, respectively. We shall mostly

think of the age of a component as the time since last replacement. Thus λ1∗(s1, s2) can

be viewed as the additional failure intensity of component C1 arising from component

C2, and is a function of the current age of C2, and possibly of the age of C1.

In the same manner we define a function λ2∗ so that λ2∗(s1, s2) is the additional

failure intensity of component C2 due to component C1. Thus the conditional failure

intensity of component C2 given the history is

ψ2(s1, s2) = λ2(s2) + λ2∗(s1, s2) (2)

In general we assume that λ1(t), λ2(t) are continuous nonnegative functions, and

that the λ1∗, λ2∗ are such that (1) and (2) are both continuous and nonnegative. In

addition we need to make the uniqueness assumptions

λ1∗(u, 0) = 0 for all u (3)

λ2∗(0, u) = 0 for all u (4)

These conditions mean that the additional failure intensity of component C1 is 0 when

component C2 is new, and vice versa.
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Note that (3-4) ensure that any pair of nonnegative functions ψ1(s1, s2), ψ2(s1, s2)

can be uniquely put in the form (1-2), although λ1∗ and λ2∗ might take negative values.

Note also that the components are independent if and only if λ1∗(t1, t2) = λ2∗(t1, t2) ≡

0. This is because independence must mean that λ1∗(t1, t2) (λ2∗(t1, t2)) is constant in

t2 (t1) and hence must equal 0 by (3-4).

We remark that the additive forms in (1-2) could be replaced by a multiplicative

form if we replaced 0 by 1 (or some known number) in conditions (3-4). The results

of the paper would still hold. It is a matter of taste as to which version is used: We

like the interpretation of λi as the intrinsic failure rate of the component, and of λi∗

as the additional failure rate induced by the other components of the system.

1.2. Identifiability

When we talk about identifiability of the model we mean that on the basis of a

single realization of the marked point process we can determine the functions λ1, λ2,

λ1∗, and λ2∗.

We conclude this section with a remark about the assumptions (3-4). These as-

sumptions are necessary for identifiability in this model, for otherwise we can only

determine the sums

λ1(s) + λ1∗(s, 0) and λ2(s) + λ2∗(0, s).

Specification of the ratio’s

λ1∗(s, 0)

λ1(s)
and

λ2∗(0, s)

λ2(s)

would be sufficient to obtain identifiability in general (clearly (3-4) imply that the

ratio’s equal zero). Such numbers, which we call moduli of identifiability, could be

estimated by expert judgement, but cannot be identified from the observations we

consider in this paper.

2. A partial repair model

Assume that when the system fails, the failing component is replaced by a new

component of the same kind, while the non-failing component is not repaired nor
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maintained. The natural data arising in this model consists of a sequence (tn, zn)

indicating the time of the nth failure tn and the number of the failed component zn.

We show that, under reasonable conditions, the natural data generated by a single

sequence of observations enables us to identify the model. This is done by showing that

the underlying marked point process is uniquely ergodic. We shall use some results

from [6], and will first recall the notation used there.

The canonical space of simple marked point processes is the space

M1 = {ψ = {(tn, zn) : n ≥ 0}}

where tn is the time of the nth event and zn is its mark. The space is endowed with the

product topology and can be metrized to become a complete separable metric space.

The collection of Borel sets is denoted B(M1). Usually we will consider M1 to be

embedded within the set of two-sided sequences

M2 = {ψ = {(tn, zn) : n ∈ Z+}}

which can similarly be considered a complete separable metric space. We also consider

subsets corresponding to simple marked point processes for which the origin is occupied,

M1,o = {ψ = {(tn, zn) : n ≥ 0, t0 = 0}}

M2,o = {ψ = {(tn, zn) : n ∈ Z+, t0 = 0}}.

The counting process associated with M1 is the mappingN(t)(ψ) that gives the number

of events minus one for the MPP ψ in the interval [0, t]. Thus in our application where

the first event is at time 0, the counting process will count the number of failures,

rather than the number of “repairs”.

We consider two different mappings on M1; they may also be defined on M2 in the

obvious way. The first is the time shift θs that simply subtracts time s from the event

times,

θs(ψ) = {(tN(s)+n+1−s, zN(s)+n+1) : N(s) + n+ 1 ≥ 0}.

The second mapping is the event time shift θ(j) which shifts the origin to the jth event

of the MPP,

θ(j)(ψ) = θtj
(ψ).
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A distribution Ψ on M1 is time stationary if for all s ≥ 0 and Borel sets E ∈ B(M1),

P (θs(Ψ) ∈ E) = P (Ψ ∈ E).

We say that Ψ on M1 is event stationary if for all j ∈ Z+ and Borel sets E ∈ B(M1),

P (θ(j)(Ψ) ∈ E) = P (Ψ ∈ E).

Similar definitions hold for distributions on M2.

Now, a given distribution Ψ need not be time or event stationary, but one can

consider two averaging processes corresponding to averaging Ψ over time shifts and

averaging over event shifts to produce stationary distributions. The distributions Ψ0

and Ψ∗ are defined by the following limits (when the limits exist):

P (Ψ0 ∈ E) = lim
n→∞

1

n

n
∑

j=1

P (θ(j)(Ψ) ∈ E);

P (Ψ∗ ∈ E) = lim
t→∞

1

t

∫ t

0

P (θs(Ψ) ∈ E).

The distributions Ψ0 and Ψ∗ are called the empirical distributions. Note for the

moment that these distributions are not based on single sample paths. Below we shall

show that in our case the limits exist for Ψ concentrated on just a single (“typical”)

point. To do this we need the concept of ergodicity.

A distribution is said to be ergodic under a transformation if the only invariant Borel

sets are trivial, that is, for any Borel set E that is preserved under the transformation

one has P (E) equal to zero or one.

From a practical point of view it is interesting to know about the time-stationary

distribution of the MPP. For the purposes of proving identifiability it will however be

easier to consider event-stationary distributions. This is because we can construct a

Markov chain representing the event dynamics of the system. Afterwards we can derive

information about the time-stationary distribution if needed.

2.1. Continuous state discrete time Markov chain representation

In the above discussion we have used the canonical representation of a MPP. An

alternative representation uses the interarrival times instead of the absolute times. Yet

another representation, that will be convenient for us is in terms of a continuous state,
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(s1,s2)

Path 1 ( C1 failure occurred)

Path 2 ( C2 failure occurred)

Figure 1: Time dependent evolution of the system

discrete time Markov chain. This representation makes the underlying structure of the

process clearer and enables us to use the theory of continuous state Markov chains to

check ergodicity.

Recall that the intensity functions only depend on the ages of the components.

Hence the state of the system can be represented by a pair (s1, s2) of non-negative

numbers. As time increases, both components age at the same rate, but eventually

one of them fails leading to its replacement and the age being reset to 0. Depending

on which component fails, the system either follows path 1 or path 2 in Figure 1.

Note that if we had n components instead of 2 then the state space would be the

non-negative quadrant of R
n.

Since the behaviour between failures is deterministic we can consider the process just

at the failure times, i.e. when it lies on the boundary of the non-negative quadrant. As

demonstrated in the next subsection, this process can be represented in a particularly

simple manner when n = 2.

2.1.1. Obtaining a Markov chain from the MPP. The behaviour of the system at time

t is independent of the past given the times s1, s2 since last replacement for each

component. Thus we can define the following Markov chain {Xn} where n is failure
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number.

If the nth failure is a C1-failure, and the time since the last C2 failure is s2, then

put

Xn = s2

If, on the other hand, the nth failure is a C2-failure, and the time since the last C1

failure is s1, then we put

Xn = −s1

The state space of the chain is therefore the set S = R (this effectively takes the

boundary of the non-negative quadrant and flattens it out). Thus Xn > 0 means that

the nth failing component is C1 and that the time since the last failure of C2 is Xn.

Conversely, Xn < 0 means that the nth failing component is C2 and that the time

since the last failure of C1 is −Xn. We write the mark of the nth component as

m(Xn) =







1 if Xn > 0

2 if Xn < 0.

The case Xn = 0 means that both components failed simultaneously. Under our

assumptions this occurs with zero probability, except possibly as a starting condition.

Now suppose Xn = s2 > 0. Then the nth failure was a C1-failure, and Xn+1 is

either s2 + t or −t for some t > 0. The former case occurs if the next failure is another

C1-failure, occurring a time t after the previous failure, while the latter corresponds to

a C2-failure occurring a time t after the previous failure.

2.1.2. Obtaining the MPP from the Markov chain. A realization (Xn;n ≥ 0) of the

Markov chain together with the time t0 of event 0 specifies the realization of the

marked point process as follows:

1. Event 0 occurs at time t0, and is a failure of component m(X0).

2. If sgn(X1) 6= sgn(X0) then Event 1 occurs at time t1 = t0 + |X1| and is a failure

of component m(X1).

3. If sgn(X1) = sgn(X0) then Event 1 occurs at time t1 = t0 + |X1| − |X0| and is a

failure of component m(X1).

4. ...
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5. If sgn(Xn) 6= sgn(Xn−1) then Event n occurs at time tn = tn−1 + |Xn| and is a

failure of component m(Xn).

6. If sgn(Xn) = sgn(Xn−1) then Event n occurs at time

tn = tn−1 + |Xn| − |Xn−1|

and is a failure of component m(Xn).

2.1.3. Transition densities and MPP intensities. Given the relation between the MPP

and Markov chain representations, we should expect that the intensity and transition

densities can be written in terms of one another.

In general the transition densities of a Markov chain Xn on S with the same allowed

moves as the described chain, are determined by a set of subdensities for t > 0,

associated with the different possible moves,

f11(t|s) for transitions from s > 0 to s+ t > 0 (5)

f12(t|s) for transitions from s > 0 to − t < 0 (6)

f21(t|s) for transitions from s < 0 to t > 0 (7)

f22(t|s) for transitions from s < 0 to s− t < 0 (8)

Note the meaning of the indices of the f -densities, for example the index 12 of f12(t|s)

means that we go from a C1-failure (1) to a C2-failure (2) and that the starting state

was s (which is necessarily > 0). Using the identification of S with R we will then have

the complete transition densities from state s > 0 to be

p(s, x) =







f11(x− s|s) for x > s

f12(x|s) for x < 0

(see Figure 2). A similar density can be written down for start in s < 0, namely

p(s, x) =







f21(x|s) for x > 0

f22(s− x|s) for x < s

We remark that the sums

f1·(t|s) = f11(t|s) + f12(t|s) (9)

f2·(t|s) = f21(t|s) + f22(t|s) (10)
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Figure 2: Allowable transitions and densities

are density functions for the elapsed time from the occurrence of failure number n to

the occurrence of failure number n+ 1, given Xn = s.

Returning to the model formulation in Section 1.1 we can express the f -functions

in terms of the functions ψ1, ψ2 as follows,

f11(t|s) = ψ1(t, s+ t) exp{−

∫ t

0

(ψ1(u, s+ u) + ψ2(u, s+ u))du},

s > 0, t > 0 (11)

f12(t|s) = ψ2(t, s+ t) exp{−

∫ t

0

(ψ1(u, s+ u) + ψ2(u, s+ u))du},

s > 0, t > 0 (12)

f21(t|s) = ψ1(−s+ t, t) exp{−

∫ t

0

(ψ1(−s+ u, u) + ψ2(−s+ u, u))du},

s < 0, t > 0 (13)

f22(t|s) = ψ2(−s+ t, t) exp{−

∫ t

0

(ψ1(−s+ u, u) + ψ2(−s+ u, u))du},

s < 0, t > 0 (14)

We now show
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Theorem 1. For each possible set of the four functions (5-8) there exists a unique set

of functions λ1, λ1∗, λ2, λ2∗ satisfying the requirements (1-4).

Proof. By uniqueness of the λ1, λ1∗, λ2, λ2∗ (Section 1.1) it is enough to show that

(11-14) imply unique functions ψ1, ψ2. To prove this last fact, note that to any density

function f(t) of a continuous, positive random variable there exists a unique hazard rate

z(t) such that f(t) = z(t) exp{−
∫ t

0 z(u)du}. Hence if f1(t) and f2(t) are nonnegative

functions with sum equal to the f(t) above, then there exist unique z1(t) and z2(t)

with sum z(t) and such that fi(t) = zi(t) exp{−
∫ t

0 z(u)du} for i = 1, 2. The result

follows from this.

It follows that if the observation of the process {Xn} from time 0 to infinity deter-

mines all transition densities, then the partial repair model is identifiable by a single

sequence. This leads us to the investigation of ergodicity of the chain.

2.2. Ergodicity of the Markov chain

We will demonstrate ergodicity of the chain by applying results from [3].

The basic assumption of Doob is his Condition D: This says that there is a positive

finite valued measure φ on the state space, an integer ν ≥ 1 and a positive ε such that

for all ξ,

p(ν)(ξ, A) ≡ P (Xν ∈ A|X0 = ξ) ≤ 1 − ε, if φ(A) ≤ ε.

Condition D does not automatically follow for the Markov chain we have defined.

Extra assumptions are needed to show that it holds. The assumption we use is that

the probability of failure of one component just after the other component has failed

is bounded away from zero, independently of the age of the component. Formally, for

each δ > 0 there exist η = η(δ) > 0 such that for all s,

p(s, (−δ, δ)) > η. (15)

Proposition 1. Under condition (15) the Markov chain satisfies Doob’s Condition D.

Proof. By the assumed continuity of the λ-functions, and the fact that there is an

interval C such that the probability of a transition to C from 0 is positive, we conclude

that there is η′ > 0 and an interval B ⊂ C such that the transition density to b ∈ B
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from any s ∈ (−δ, δ) has value at least η′. By the assumption (15) we can then estimate

the two-step transition density by

p(2)(s, b) > η′′, for all b ∈ B, s ∈ R,

for some η′′ > 0. Hence for any Borel set A ⊂ R, we can estimate the two step

transition probability

p(2)(s, A) = 1 − p(2)(s, Ac) ≤ 1 − p(2)(s,B \A)

< 1 − η′′φ(B \A) ≤ 1 − η′′(φ(B) − φ(A)).

where φ is Lebesgue-measure.

Taking

ε =
φ(B)η′′

1 + η′′

we have

p(2)(s, A) < 1 − η′′φ(B) + η′′φ(A) = 1 − (1 + η′′)ε+ η′′φ(A)

< 1 − (1 + η′′)ε+ η′′ε = 1 − ε,

and we see that Doob’s Condition D holds.

The consequence of Condition D is that the state space contains a countable number

of minimal invariant sets. Since in our case the transition density from s is positive

outside the interval between 0 and s, we conclude that there is a single invariant

minimal set, equal to R, the whole state space. As a corollary of Doob’s Theorem

5.7 we conclude that there is a single stationary distribution, which is therefore also

ergodic.

Hence for any starting point of the Markov chain, the chain will converge (in Cesaro

sense) to the ergodic stationary distribution π. In particular, for any Borel set A, and

for any starting point X0,

lim
n→∞

1

n

n
∑

1

1A(Xi) = π(A).

Suppose now that X0 has the stationary distribution. Then, for any Borel sets A and

B, we can consider the probability q(A,B) = π(X0 ∈ A,X1 ∈ B). By considering the

Markov chain Yn = (Xn, Xn−1) on the state space S×S which is also uniquely ergodic
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we see that probability q(A,B) can be determined in the same way. For any starting

point Y0,

lim
n→∞

1

n

n
∑

1

1(A,B)((Xi, Xi+1)) = q(A,B).

We can write q(A,B) in terms of the stationary distribution and the transition prob-

abilities by q(A,B) =
∫

A
p(x,B) dπ(x). Since the transition densities are continuous

we find

p(x,B) = lim
ε→0

q((x − ε, x+ ε), B)/π((x − ε, x+ ε)).

Similarly, by taking B to be a small interval around a point y, and letting its diameter

go to zero, we obtain the transition density from x to y.

We conclude that the transition densities of the Markov chain, and hence also

the conditional intensities of the marked point process, are identifiable from a single

sequence.

2.3. Sufficient conditions for ergodicity

In this subsection we consider sufficient criterions for condition (15) in terms of the

λ-functions.

Proposition 2. Suppose for each given δ > 0 there is an ε = ε(δ) ≤ δ and positive

numbers Ai(δ), Bi(δ), Ci(δ) (i = 1, 2) such that for all s > 0,

(i) λ2(s+t)+λ2∗(t,s+t)
λ1(t)+λ1∗(t,s+t) ≥ A1(δ) > 0, t ∈ [δ − ε, δ]

(ii) λ1(s+t)+λ1∗(s+t,t)
λ2(t)+λ2∗(s+t,t) ≥ A2(δ) > 0, t ∈ [δ − ε, δ]

(iii)
∫ δ

0
[λ1(u) + λ1∗(u, s+ u) + λ2(s+ u) + λ2∗(u, s+ u)]du ≤ B1(δ) <∞

(iv)
∫ δ

0 [λ1(s+ u) + λ1∗(s+ u, u) + λ2(u) + λ2∗(s+ u, u)]du ≤ B2(δ) <∞

(v)
∫ δ

δ−ε
[λ1(u) + λ1∗(u, s+ u) + λ2(s+ u) + λ2∗(u, s+ u)]du ≥ C1(δ) > 0

(vi)
∫ δ

δ−ε
[λ1(s+ u) + λ1∗(s+ u, u) + λ2(u) + λ2∗(s+ u, u)]du ≥ C2(δ) > 0

Then the conditon (15) holds.

Proof. Let s > 0 and δ > 0 be arbitrarily chosen. Then with ε = ε(δ) we get from

(i) that

λ2(s+ t) + λ2∗(t, s+ t) ≥
A1(δ)

1 +A1(δ)
(λ1(t) + λ1∗(t, s+ t) + λ2(s+ t) + λ2∗(t, s+ t))
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for all t ∈ [δ − ε, δ], and hence

p(s,(−δ, δ))

≥

∫ δ

0

f12(t|s)dt ≥

∫ δ

δ−ε

f12(t|s)dt

≥
A1(δ)

1 +A1(δ)
exp{−

∫ δ−ε

0

[λ1(u) + λ1∗(u, s+ u) + λ2(s+ u) + λ2∗(u, s+ u)]du}

×

(

1 − exp{−

∫ δ

δ−ε

[λ1(u) + λ1∗(u, s+ u) + λ2(s+ u) + λ2∗(u, s+ u)]du}

)

≥
A1(δ)

1 +A1(δ)
e−B1(δ)(1 − e−C1(δ)) ≡ η(δ) > 0

where we used (iii),(v) and the fact that

∫ b

a

z(t) exp{−

∫ t

0

z(u)du}dt = exp{−

∫ a

0

z(u)du}

(

1 − exp{−

∫ b

a

z(u)du}

)

for any function z(·). Thus condition (15) holds when s > 0.

The proof of (15) for the case s < 0 is similar.

Remark. Conditions (i)-(vi) of Proposition 2 follow trivially if all the involved λ-

functions are nonnegative and uniformly bounded away from 0 and ∞. In practice,

however, we need to handle cases with unbounded functions as well. Indeed, the most

commonly used parametric models for failure intensities are in fact unbounded. The

following corollary covers many models of practical interest.

Corollary 1. Suppose λ1(t), λ2(t) > 0 for all t > 0 and suppose these two functions

are bounded away from 0 as t → ∞. Suppose next that λ1∗(s, t) ≡ ρ1(t) ≥ 0 is a

nonnegative function depending only on t, and that similarly λ2∗(s, t) ≡ ρ2(s) ≥ 0 is a

nonnegative function depending only on s. Suppose also that the integrals
∫ δ

0 λi(u)du,
∫ δ

0
ρi(u)du (i = 1, 2) are finite for all δ > 0.

Then the two conditions

lim inf
s→∞

λ2(s)

ρ1(s)
≡ L1 > 0 (16)

lim inf
s→∞

λ1(s)

ρ2(s)
≡ L2 > 0 (17)

(where we put f(s)/g(s) = ∞ if g(s) = 0) together imply the assumptions of Proposi-

tion 2.
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Proof. Consider first (i) of Proposition 2. If ρ1(·) is bounded, then (i) holds since

λ2(s) by assumption is bounded away from 0 as s→ ∞. If ρ1(·) is not bounded, then

(16) readily implies that lim infs→∞
λ2(s+t)+ρ2(t)
λ1(t)+ρ1(s+t) = L1 for all t > 0 from which (i)

follows. Now (ii) follows similarly from (17). The remaining conditions (iii)-(vi) are

simple consequences of the assumptions.

Remark. Note that the conditions of the corollary include cases where possibly

λi(0) = 0 or limt→0 λi(t) = ∞. Conditions (16-17) intuitively state that the influence

of a component’s age on the failure intensity of the other component can be of no larger

order of magnitude than the influence of its age on its own basic intensity. Theoretically,

this has to do with the fulfillment of Doob’s Condition D, but in practice it also seems

to be a reasonable assumption in the partial repair model.

2.3.1. A Weibull type partial repair model. In analyses of repairable systems one com-

monly uses failure intensities of the power-law form, γβtβ−1, where γ, β > 0. This

gives a Weibull renewal process in the case of perfect repairs, and a so-called Weibull

nonhomogenous Poisson process in the minimal repair case. Here we suggest a Weibull

partial repair model as follows, using the notation from Corollary 1:

λi(t) = γiβit
βi−1

ρi(t) = κiµit
µi−1

for i = 1, 2, and all parameters assumed positive.

It is seen that the assumptions of Corollary 1 are satisfied when β1 ≥ µ2 and β2 ≥ µ1.

In words these state that the exponent of the age parameter t should be no larger for

the influence of age on the other component, than on the component itself.

2.3.2. Models with bounded dependence terms. A generalized exponential model. As

already noted, one should expect that in practice the influence of a component on the

failure intensity of another component is considerably less than the basic failure inten-

sity of the component itself. For certain applications it might even seem reasonable to

assume that the functions λi∗(s, t) are bounded. For practical modelling the following
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parametric functions could then be tried,

λ1∗(s, t) = γ1(1 − e−κ1s)(1 − e−µ1t) (18)

λ2∗(s, t) = γ2(1 − e−κ2t)(1 − e−µ2s) (19)

Here the µi are parameters determining the influence of the other component, while

the κi can be considered as tuning parameters for the interdependence between the

ages of the components. Note that κ1 = ∞ (κ2 = ∞) leads to the case where λ1∗(s, t)

(λ2∗(s, t)) is a function of t (s) alone.

A simple model involving the constant functions λ1(t) ≡ λ1, λ2(t) ≡ λ2, and

dependence terms given as in (18-19) is likely to be useful for situations where one

suspects a dependence between basically exponential lifetimes.

2.4. The stationary distribution of the point process

In the above section we have shown that the conditional intensities of the marked

point process are identifiable using the stationary distribution of a related process. We

now show how this is related to the stationary distribution of the point process.

We showed above that an infinite sequence from the state space S of the Markov

chain, together with a time for the zeroth event, specify an point from the canonical

space of the MPP. If we restrict our attention to these MPP’s for which the origin is

occupied then we see that we have a bijection α : SZ+ →M1,o (or α : SZ →M2,o if we

want to consider bi-infinite processes). Furthermore, the Markov shift commutes with

the event shift θ(1),

SZ+
−→
θ(1) SZ+

α ↓ ↓ α

M1
−→
θ(1) M1.

Hence the unique stationary ergodic distribution that we have constructed for the

Markov chain corresponds (via α) to a unique stationary ergodic distribution for the

event shift operator. Following [6] we call this event shift stationary distribution P0.

Now, from the theory of marked point processes (in [6]) we know how to construct a

time stationary distribution from an event stationary distribution: essentially we just

have to put in the information about the distance to the origin of the 0th event, and

reweight the event stationary distribution to take account of the size, T0, of the interval
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between the 0th and 1st events. We paraphrase Theorem 2.9 and Propsition 2.8 of [6]:

Theorem 2. If 0 < EP0(T0) < ∞ then an ergodic time stationary distribution P∗

exists satisfying

P∗(E) = lim
t→∞

1

t

∫ t

0

P0(θs(ψ) ∈ E) ds

=
EP0(

∫ T0

0
1{θs(ψ) ∈ E} ds)

EP0(T0)
.

Note that Sigman states this result for general stationary distributions (not neces-

sarily ergodic) and also gives a formula describing P0 in terms of P∗.

It is easy to see that if the density functions given in 9 and 10 have uniformly

bounded first moment then 0 < EP0(T0) <∞ holds.

2.5. Generalization to more than two components

As we stated in the introduction, the main ideas can be discussed when we have a

system involving just two components. The ideas can, however, be generalized to n

components. In this section we discuss briefly the way in which that can be done.

The first important step is to consider the conditional failure intensity of component

i. This is written as

ψi(s1, . . . , sn) = λi(si) + λi∗(s1, . . . , sn), (20)

where λi(si) is the failure rate of component i at age si, λi∗(s1, . . . , sn) is the additional

failure intensity due to the influence of the other components at their respective ages

s1, . . . , sn. Again, we make the assumption that when the “other” components are new

there is no additional influence on the failure intensity of component i,

λi∗(s1, . . . , sn) = 0 (21)

for all si when sj = 0 (j 6= i). Note that this includes the case where the failure

intensity of each component (i) is influenced additively by the other components, that

is where λi∗(s1, . . . , sn) =
∑

j 6=i λij(si, sj), and λij(si, sj) = 0 if sj = 0.

The marked point process in this case is the same as before, except that the marking

set is {1, . . . , n}. Similarly, the state space for the continuous state Markov chain is

the boundary of the non-negative quadrant of R
n, where the vector elements represent
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the current age of each component. The faces of this boundary correspond to the sets

of states where one given component failed last.

Expressions similar to those of (11-14) hold, that describe the likelihoods of transi-

tions from one face of the state space to another. The natural generalization of Theorem

1 holds, so that if we are able to estimate the transition densities from observations,

then we can also estimate the intensity functions.

Recalling that our aim is to show that under appropriate conditions we have iden-

tifiability of the intensity functions, we first show that, essentially, it just depends on

whether or not the Markov chain is ergodic.

Theorem 3. Suppose that the Markov chain constructed above has a unique ergodic

invariant probability distribution. Then the transition density functions of the Markov

chain can be estimated (almost surely) from a single sequence of observations and the

failure intensities of the competing risk model are identifiable.

We remark that even if the Markov chain did not have an ergodic invariant proba-

bility distribution, as long as there was a σ-finite ergodic distribution, the Hopf ratio

ergodic theorem would still allow us to derive the transition density functions. Such

considerations take us, however, away from the main point of the paper.

We have given conditions for n = 2 under which the Markov chain has a unique

ergodic invariant probability distribution. It seems rather difficult to state very general

conditions under which this holds when n > 2 (or indeed optimal conditions when

n = 2).

3. Other repair models

The standard models used for standard repairable systems with only one failure

mode are renewal processes and nonhomogeneous Poisson processes. These correspond

to, respectively, complete and minimal repair at failures. In this section we consider

the corresponding cases for the competing risk situation of the present paper.
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3.1. Complete repair

In this case both components are replaced at each system failure T1, T2, . . .. It

follows that the conditional failure intensities for the two components are, respectively,

λ1(t) + λ1∗(t, t)

λ2(t) + λ2∗(t, t)

where t is the time since last system failure. Thus T1, T2, . . . is a renewal process where

the interarrival distribution is determined by the hazard rate

λ1(t) + λ1∗(t, t) + λ2(t) + λ2∗(t, t)

while the marks Z1, Z2, . . . have the distribution

P (Zj = 1|Tj − Tj−1 = t) =
λ1(t) + λ1∗(t, t)

λ1(t) + λ1∗(t, t) + λ2(t) + λ2∗(t, t)

Generally, only the two functions λ1(t) + λ1∗(t, t) and λ2(t) + λ2∗(t, t) are identifiable.

3.2. Minimal repair

Minimal repair means here that the age of each component is identical to the running

time t. Thus the failure intensity for the two components at time t are, respectively,

λ1(t) + λ1∗(t, t) (22)

λ2(t) + λ2∗(t, t) (23)

Since the failure processes are completely independent of the (failure) history, and

each has a deterministic conditional intensity function, it follows that the failure pro-

cesses of C1 and C2 are stochastically independent nonhomogenous Poisson processes

with intensity functions given by (22-23).

Thus, as for the complete repair case, only the functions λ1(t)+λ1∗(t, t) and λ2(t)+

λ2∗(t, t) are identifiable in general.

4. Representation by a joint survival distribution

Repair models involving a single component may often be described in terms of the

survival function R(t) for the lifetime of a new component (see e.g. Dorado et al. [4]).
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The question now arises: can the partial repair model described in the present paper

be represented by a joint survival function, or is it more general? The purpose of this

section is to explore this issue. Let R(t1, t2) be a joint survival distribution, say for

the pair Y1, Y2 of lifetimes. This means that R is nonincreasing in each argument,

and we assume in addition that R(0, 0) = 1 and R(∞,∞) = 0. We shall use R(·, ·)

to define the probabilistic behaviour of the system and then relate it to the functions

λ1, λ1∗, λ2, λ2∗.

Suppose the ages of the two components are s1, s2, respectively. We then consider

the conditional distribution of Y1, Y2 given Y1 > s1, Y2 > s2, which has the joint

survival distribution

R(s1,s2)(t1, t2) =
R(s1 + t1, s2 + t2)

R(s1, s2)

Let T ∗
1 , T

∗
2 be a pair of lifetimes with this distribution. Then we let the time to next

failure be T ∗ = min{T ∗
1 , T

∗
2 }, which has density function

−(∂/∂t)R(s1,s2)(t, t) =
−(∂/∂t)R(s1 + t, s2 + t)

R(s1, s2)
(24)

=
−D1R(s1 + t, s2 + t) −D2R(s1 + t, s2 + t)

R(s1, s2)
(25)

where D1, D2 are differential operators with respect to the first and second component

of the succeeding function, respectively.

Moreover, given that T ∗ = t, the probability of having T ∗ = T ∗
i (i = 1, 2) is seen to

be
DiR(s1 + t, s2 + t)

D1R(s1 + t, s2 + t) +D2R(s1 + t, s2 + t)
(26)

Thus, starting with components with ages s1, s2, the time to next failure has density

(25), while (26) is the conditional probability that the failing component is Ci, given

the failure time. Using the notation of our basic model it follows that

λ1(s1 + t) + λ1∗(s1 + t, s2 + t) = −D1R(s1 + t, s2 + t)/R(s1 + t, s2 + t) (27)

λ2(s2 + t) + λ2∗(s1 + t, s2 + t) = −D2R(s1 + t, s2 + t)/R(s1 + t, s2 + t) (28)

Putting, respectively, t = 0, s2 = 0 in (27) and t = 0, s1 = 0 in (28) we get

λ1(s1) = −D1R(s1, 0)/R(s1, 0) (29)

λ2(s2) = −D2R(0, s2)/R(0, s2) (30)
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Together with (27-28) these equations determine the functions λ1, λ1∗, λ2, λ2∗ corre-

sponding to a given joint survival function R.

Conversely, suppose instead that the functions λ1, λ1∗, λ2, λ2∗ are given and we want

to recover R(·, ·), if possible. Then we can first solve the equations (29-30) to get

R(s1, 0) = exp{−

∫ s1

0

λ1(u)du} (31)

R(0, s2) = exp{−

∫ s2

0

λ2(u)du} (32)

Next, by adding the equations (27-28) we get the equation

−(∂/∂t)R(s1 + t, s2 + t)/R(s1 + t, s2 + t)

= λ1(s1 + t) + λ1∗(s1 + t, s2 + t) + λ2(s2 + t) + λ2∗(s1 + t, s2 + t) (33)

which by fixing s1, s2 implies that

R(s1 + t, s2 + t) = R(s1, s2)

× exp{−(

∫ t

0

λ1(s1 + u)du+

∫ t

0

λ2(s2 + u)du

+

∫ t

0

λ1∗(s1 + u, s2 + u)du+

∫ t

0

λ2∗(s1 + u, s2 + u)du)} (34)

By putting, respectively, s1 = 0 and s2 = 0 in (34) we finally get the representation

R(t1, t2) = exp{−(
∫ t1

0 λ1(u)du+
∫ t2

0 λ2(u)du+
∫ t1

0 λ1∗(u, u+ t2 − t1)du

+
∫ t1

0
λ2∗(u, u+ t2 − t1)du)}, t1 < t2 (35)

R(t1, t2) = exp{−(
∫ t1

0 λ1(u)du+
∫ t2

0 λ2(u)du+
∫ t2

0 λ1∗(u+ t1 − t2, u)du

+
∫ t2
0 λ2∗(u+ t1 − t2, u)du)}, t1 > t2 (36)

So far we conclude that if there is a solution R(·, ·) to the problem, then it is

given by (35-36). On the other hand, if (35-36) is a solution, then (27-28) should be

satisfied. Now substituting (35-36) in (27-28) shows that for consistency the following

two conditions need to hold,

λ2∗(t, t+ s2) =

∫ t

0

D2λ1∗(u, u+ s2)du+

∫ t

0

D2λ2∗(u, u+ s2)du (37)

λ1∗(t+ s1, t) =

∫ t

0

D1λ1∗(s1 + u, u)du+

∫ t

0

D1λ2∗(s1 + u, u)du (38)
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It seems difficult to give these conditions an intuitive meaning. The following

observation is interesting, however, in view of the models suggested earlier: If λ1∗(t1, t2)

is a function of t2 only, and λ2∗(t1, t2) is a function of t1 only, then λ1∗(t1, t2) = δt2,

λ2∗(t1, t2) = δt1 for some δ is the only possible solution to (37-38). This rules out the

possibility of having survival distribution representations of the partial repair model

in general. The following example illustrates this point in a simple case.

Example: Gumbel’s bivariate exponential distribution. Gumbel [5] studies

three different types of bivariate exponential distributions. One of these is given by

the joint survival function

R(t1, t2) = exp{−(αt1 + βt2 + δt1t2)}

A straightforward computation using (27-30) leads to λ1(t) = α, λ2(t) = β, λ1∗(t1, t2) =

δt2, λ2∗(t1, t2) = δt1, and these functions are easily verified to satisfy (37-38).

A more general model results if we change the definition of λ1∗ to read λ1∗(t1, t2) =

γt2 with the possibility of having γ 6= δ. It follows from the above, however, that

this model cannot be represented by a joint survival distribution, thus giving a sim-

ple example of a partial repair model which is not representable by a joint survival

distribution.

It should be noted that neither of conditions (i) and (ii) of Proposition 2 are satisfied

for the Gumbel model presented in this example. In fact, it may be checked directly

that neither does Doob’s Condition D hold here. Our conjecture, based on simulations

from the model, is however that ergodicity still applies for this model. This indicates

that Condition D can be an unnecessarily strong assumption for obtaining models

of practical interest, a fact which turns out to be a general problem with the use of

Condition D. Weaker conditions for ergodicity are therefore usually sought for.

5. Conclusion

We have shown that the identifiability issue becomes more complex when repair

regimes other than perfect repair are used. Since, intuitively, the repair regime becomes

weaker as we move from perfect repair through partial repair to minimal repair,

one might imagine that the amount of information that can be derived about the
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components also decreases. However, this is not the case. The middle case actually

gives full identifiability, while both extreme cases lack identifiability.
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