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Abstract

A new method for nonparametric censored exponential regression, called the covariate
order method, is presented. It is shown that the method leads to a consistent estimator
of the hazard rate as a function of the covariate. Moreover, interesting applications to
more general cases of lifetime regression are presented. Possible applications include the
construction of tests for covariate effect and estimation and residual plots in Cox-regression
models. The key is here to perform suitable transformations to exponentiality before
applying the covariate order method.

1 INTRODUCTION

A first analysis of lifetimes of a set of items, for example identical mechanical or electronic
components, is often based on the assumption that the lifetimes are independent and identi-
cally exponentially distributed. This implies assuming a common and constant hazard rate λ
for each item. A less restrictive and often more realistic assumption is to assume exponential
lifetimes with hazard rate λ varying from item to item, for example due to differences in op-
erating or environmental conditions. Such conditions may often be quantified by observable
covariates, in which case one assumes that λ = λ(x), where x is an m-dimensional vector of
covariates. Exponential regression means estimating the hazard rate λ(x) from observed life-
times and covariates. If some of the observations are censored we call it censored exponential
regression.

The literature contains a number of estimation methods which can be used for censored
exponential regression. Parametric estimation is most conveniently done by fitting a gener-
alized linear model (McCullagh and Nelder, 1989). Various approaches which can be used
for nonparametric estimation of λ(x) have furthermore been suggested. For example, Hastie
and Tibshirani (1990b) consider estimation in generalized additive models as a natural non-
parametric extension of generalized linear models. Other relevant references are Hastie and
Tibshirani (1990a) and Gray (1992) who consider spline based methods, and Tibshirani and
Hastie (1987), Staniswalis (1989), Gentleman and Crowley (1991) and Fan, Gijbels and King
(1997) who consider local likelihood methods for nonparametric estimation in Cox-regression
models.

In this paper we present a new nonparametric method for exponential regression, called the
covariate order method. For the case of a single covariate the method can be briefly described
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as follows: First, arrange the observations (both non-censored and censored) in increasing
order of the covariate. Then plot the observed times successively as “interevent times” on an
artificial time axis. Let the true events in the resulting point process be the ones which are
endpoints corresponding to an uncensored observation. A consistent estimator of the hazard
rate function λ(x) can then be found by first estimating the intensity of the process defined
above, and then combining this function with an estimated relationship between points on the
artificial time axis and the covariate axis. A kernel-estimator will be used for estimating the
intensity of the process. Generalizations to more than one covariate are possible, for example
by assuming a generalized additive model.

It should be stressed that the covariate order method in its basic form rests heavily on the
assumption of exponentially distributed lifetimes. In fact, the estimate of λ(x) would have no
meaning if the same procedure was tried on non-exponential lifetimes. However, often we are
able to transform our data to follow, at least approximately, an exponential regression model.
In these cases we can use the covariate order method on the transformed data, and this turns
out to be a useful approach in applications. For example, Kvaløy (2002) used the covariate
order method to suggest tests for covariate effect in general censored regression models (see
Section 2.5 of the present paper), while Kvaløy and Lindqvist (2003) used the covariate order
method in nonparametric estimation of covariate functions in Cox-regression (see Section 3.2).

The main purpose of the present paper is to give a formal presentation of the covariate
order method and its practical implementation (Sections 2.1-2.4), and in addition to give
a rigorous proof of consistency of the method in the single covariate case (Appendix). In
order to illustrate the direct method we give an example with exponential data in Section 2.6.
Sections 3.1 and 3.3 illustrate the use of the covariate order method to transformed data. More
precisely it is shown how to make illustrative residual plots based on Cox-Snell residuals in
Cox-regression models, and how the method can be used to suggest possible transformations
of covariates.

2 THE COVARIATE ORDER METHOD FOR EXPONEN-
TIAL REGRESSION

The basic formulation of the problem is as follows. Assume that we have n independent ob-
servations (T1, δ1,X1), . . . , (Tn, δn,Xn) of the random triple (T, δ,X), where T = min(Z,C),
δ = I(Z ≤ C) and X is a vector of covariates. For given X = x, Z is assumed to be exponen-
tially distributed with an unknown hazard rate λ(x), that is fZ(t|x) = λ(x) exp(−λ(x)t).

Further, C is distributed according to some unknown censoring distribution fC(t|x) which
may depend on x, and C is assumed to be independent of Z given X. Let Z be called the
lifetime, C the censoring time and T the observation time. This terminology is introduced
only for convenience, Z can be any kind of exponentially distributed variables.

The domain of the covariate vector X is a subset X of R
m, and X is assumed to be

distributed according to some density function fX(x). The corresponding cumulative distri-
bution function is denoted FX(x). The covariates are assumed to remain constant over time,
and λ(x) is assumed to be continuous on X . The method is first described for the case of a
single covariate, in other words for m = 1. Extensions to higher dimensions are discussed in
Section 2.3.
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2.1 Method description and main theoretical results

The method proceeds conditionally on X1, . . . ,Xn and starts by first arranging the obser-
vations (T1, δ1,X1), . . . , (Tn, δn,Xn) such that X1 ≤ X2 ≤ · · · ≤ Xn. Notice that ties
in X1, . . . ,Xn by the above assumptions have zero probability of occurring. In practice,
however, continuous data are only recorded to a finite number of digits, and ties may oc-
cur. If there is a small number of ties in the observed covariate values this can in prac-
tice be handled by arranging the observations with equal covariate values in random or-
der. Next, for convenience, divide the observation times by the number of observations,
n. Then let the scaled observation times T1/n, . . . , Tn/n, irrespectively if they are cen-
sored or not, be subsequent inter-arrival times of an artificial point process on a time axis
s. For this process, let points which are endpoints of intervals corresponding to uncen-
sored observations be considered as events, occurring at times denoted S1, . . . , Sr where
r =

∑n
j=1 δj . This is visualized in Figure 1, for an example where the ordered observations

are (T1, δ1 = 1), (T2, δ2 = 0), (T3, δ3 = 1), . . . , (Tn−1, δn−1 = 0), (Tn, δn = 1).

-

0 S1 S2 Sr
s

1
n

T1︷ ︸︸ ︷ 1
n

T2︷ ︸︸ ︷ 1
n

T3︷ ︸︸ ︷ 1
n

Tn︷ ︸︸ ︷. . .

Figure 1: Construction of artificial process.

More precisely, Si =
∑k(i)

j=1 Tj/n where k(i) = min{s|
∑s

j=1 δj = i}. Now the conditional
intensity of the process S1, . . . , Sr at a point w on the s-axis, given the complete history of the
Tj up to s, equals nλ(XI) where I is defined from

∑I−1
i=1 Ti/n < w ≤

∑I
i=1 Ti/n. The basic

idea is to estimate this intensity from the process S1, . . . , Sr, yielding the estimator ρ̂n(w),
and then invert the relation nλ̂(XI) = ρ̂n(w) to obtain an estimate of λ̂(x) at given points x.
The key here is the relationship between X1, . . . ,Xn on the “covariate-axis” and the process
S1, . . . , Sr on the “s-axis”. A possible way of estimating such a relationship is to use the
step-function

s̃(x) =
1
n

j∑
i=1

Ti, Xj ≤ x < Xj+1, (1)

see Figure 2 for an illustration, and then define λ̂(x) = ρ̂(s̃(x)).
The motivating idea of the method is that if λ(x) = λ is constant, then the process

S1, . . . , Sr is a homogeneous Poisson process. (The test presented in Section 2.5 is in fact
based on this observation.) Thus if λ(x) is reasonably smooth and not varying too much, then
the process S1, . . . , Sr could be imagined to be nearly a nonhomogeneous Poisson process for
which the intensity can be estimated by for instance kernel density estimation based on the
points S1, . . . , Sr. Combining this kernel estimate and (1) leads to an estimate of λ(x). The
estimator arising from this heuristic reasoning is the one presented below, but more precise
arguments are needed to derive the estimator formally and to prove its consistency. All proofs
are given in the Appendix.

Let Fn
s be the history of the process S1, . . . , Sr in the interval [0, s). This history is

formally defined as the sub-σ-algebra Fn
s = σ{X1, . . . ,Xn} ∪ σ{Sj : Sj ≤ s} for s ≥ 0. Note

that X1, . . . ,Xn is contained in all the Fn
s . Let ρn(s|Fn

s ) be the conditional intensity of the
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process S1, . . . , Sr at the point s (Andersen, Borgan, Gill and Keiding, 1993, p. 75). Then
the first step in the formal derivation of a consistent estimator for λ(x) is Theorem 2.1 below.
This theorem states that the scaled conditional intensity of the process S1, . . . , Sr converges
in probability to a deterministic function of λ(·), and gives an asymptotic relation between
the processes running on the s-axis and the covariate axis respectively.

Theorem 2.1 Let the situation be as described above and in the formulation of the problem
at the beginning of the section. Further assume that supx∈X λ(x) ≤ M < ∞, infx∈X λ(x) ≥
a > 0, and that supx∈X λ′(x) ≤ D < ∞. The conditional distribution of C given x is assumed
to have finite first and second order moments and fC(t|x) is assumed to have bounded first
derivative in x for all x ∈ X . Then

ρn(s|Fn
s )/n

p→ λ(η(s))

as n → ∞ uniformly in s, where η(s) is a deterministic function from the s-axis to the
covariate axis, the inverse of which is given by

s(x) = E(TI(X ≤ x)).

The function s(x) is called the correspondence function. Note that for the special case of
no censoring, s(x) can be written s(x) =

∫ x
−∞ fX (v)/λ(v)dv.

The fact that the scaled conditional intensity of the process S1, . . . , Sr converges uniformly
to λ(η(s)) can be used to derive an estimator for λ(x) by estimating the inverse function s(x)
and ρn(s|Fn

s )/n. As a first step we state the following lemma.

Lemma 2.1 Let the situation be as in Theorem 2.1. Then s̃(x) in (1) is a uniformly consis-
tent estimator of s(x).

Finally, a uniformly consistent estimator of λ(x) is established by the following theorem.

Theorem 2.2 Let the situation be as in Theorem 2.1. Further let K(·) be a positive kernel
function which vanishes outside [-1,1] and has integral 1, and let hs be a smoothing parameter
which is either constant or varying along the s-axis. Assume that hs → 0 as n → ∞ for all
s. Further assume that there is a sequence hn such that hs ≥ hn for all s, n where nhn →∞
as n →∞. Then the estimator

λ̂(x) =
1

nhs

r∑
i=1

K

(
s̃(x)− Si

hs

)
; x ∈ X (2)

is a uniformly consistent estimator of λ(x).

2.2 Smoothing details

In practical use the estimated correspondence function (1) may be replaced by more so-
phisticated estimators, improving on the smoothness of the estimator (2). We have used the
super-smoother of Friedman (1984) to obtain a smooth correspondence function estimate ŝ(x)
from the points (X1, T1/n), . . . , (Xn,

∑n
i=1 Ti/n). This estimate is calculated by using local

linear regression with a variable bandwidth which is chosen locally using local cross-validation.
To avoid the estimate λ̂(x) to be seriously downward biased near the endpoints special care

must be taken at the boundaries. Viewed only as a problem on the s-axis the estimator (2)
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is simply density estimation on the s-axis, and techniques for handling boundary problems in
density estimation can be adopted. A common technique is to reflect the data points around
both endpoints, see for example Silverman (1986), corresponding to using the estimator

λ̂(x) =
1

nhs

r∑
i=1

[
K(

ŝ(x)− Si

hs
) + K(

ŝ(x) + Si

hs
) +K(

ŝ(x) + Si − 2S
hs

)
]

(3)

where S =
∑n

j=1 Tj/n.

x

hx

hs

ŝ(x)
s̃(x)

S1 S2 Sr· · ·

...

X1

X2

X3

Xn

s

Figure 2: The left shows an example of what the estimated correspondence function s̃(x) (1) might look
like. The right plot illustrates a smoothed correspondence function estimate ŝ(x) and the relationship
between the smoothing parameter on the covariate axis and the s-axis.

The smoothing parameter hs corresponds to smoothing over a certain amount of the data
on the s-axis. On the covariate axis, a corresponding smoothing parameter hx which cover
approximately the same amount of the data can be defined via the relation between the points
on the s-axis and the covariate axis. See the right plot in Figure 2 for a rough description
of the idea. If one of the smoothing parameters, hs or hx, is held constant, the other will in
general be varying (or both can be varying). Whereas a constant hs corresponds to ordinary
density estimation on the s-axis, a constant hx corresponds to what is commonly used in
nonparametric regression methods. If a constant hx is used, then (3) becomes

λ̂(x) =
1

nhs(ŝ(x))

r∑
i=1

[
K(

ŝ(x)− Si

hs(ŝ(x))
) + K(

ŝ(x) + Si

hs(ŝ(x))
) +K(

ŝ(x) + Si − 2S
hs(ŝ(x))

)
]

(4)

where hs(ŝ(x)) = ŝ(x + hx/2) − ŝ(x− hx/2). For instance likelihood cross-validation can be
used as criterion for choosing the “best” value of the smoothing parameter.

2.3 Several covariates

The covariate order method is not directly generalizable to higher dimensions, mainly because
Rm is not linearly ordered for m > 1. Thus instead we suggest to reduce the dimension of
the problem by assuming some structure on the covariate space. One way to proceed is to
assume that the hazard rate can be written in the form of a generalized additive model

λ(x) = exp(α + g1(x1)+, . . . ,+gm(xm)), (5)
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where x = (x1, . . . , xm) ∈ X ⊆ R
m, and where g1(·), . . . , gm(·) are unspecified smooth func-

tions. These functions can be estimated by the covariate order method using an iterative
backfitting algorithm. The key point is that if Z is exponentially distributed with parameter
exp(α + g1(x1) + . . . + gm(xm)), then Z exp(α + g1(x1) + . . . + gj−1(xj−1)+ gj+1(xj+1) + . . . +
gm(xm)) will be exponentially distributed with parameter exp(gj(xj)). Also note that it is
possible to let some of the g-functions be parametric, for instance for discrete covariates.

2.4 Comments on the basic method

Notice the flexibility of the covariate order method. Any density estimation method should
possibly be usable in the estimation of the scaled intensity of the process on the s-axis, and the
smoothing parameter can be chosen either according to the values of the covariates or accord-
ing to the values of the observation times. Boundary problems can be handled by adapting
any edge correction technique invented for density estimation, and different smoothers can be
used to estimate s(x).

Further, the method is numerically very robust. For the m = 1 case numerical problems
can not occur. For m > 1 numerical problems have never been encountered either, and
convergence is fast. A useful plot related to the method is to plot the points (X1, T1/n), . . . ,
(Xn,

∑n
i=1 Ti/n) which corresponds to the jumps of the estimated correspondence function

s̃(x). This plot gives a rough unsmoothed display of the data, and is also a convenient way
of simultaneously identifying outliers in observation times and covariate values.

2.5 Testing for covariate effect

Recall from Section 2.1 that if there is no covariate effect, that is λ(x) ≡ λ, then the process
S1, . . . , Sr is a homogeneous Poisson process (HPP). This observation suggests that in principle
any statistical test for the null hypothesis of an HPP versus various non-HPP alternatives
can be applied to test for covariate effect in exponential regression models. Moreover, such
an approach can be extended to non-exponentially distributed lifetimes by transforming the
observation times to approximately exponentially distributed data.

A detailed account of this approach for testing for covariate effect in lifetime data is given
by Kvaløy (2002), who presents a number of different tests constructed based on the covariate
order method. The recommendation is to use an Anderson-Darling type test which turns out
to have very good power properties against both monotonic and non-monotonic alternatives
to constant λ(x). As before, let S =

∑n
i=1 Ti/n and define

r̂ =
{

r if Sr < S
r − 1 if Sr = S

Then the test statistic for the Anderson-Darling test is

AD = −1
r̂

[
r̂∑

i=1

(2i− 1)(ln
Si

S
+ ln(1− Sr̂+1−i

S
))

]
− r̂ (6)

The asymptotic null distribution of (6) was derived by Anderson and Darling (1952). For
example, given a 5% significance level, the null hypothesis of no covariate effect is rejected if
AD ≥ 2.492. For small sample sizes the level properties of the test can be improved by use
of resampling techniques (Kvaløy, 2002).
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2.6 Example: Cardiac arrest versus air temperature

We give an example of direct application of the covariate order method to data for times
of out-of-hospital cardiac arrests reported to a Norwegian hospital over a 5 years period.
A previous analysis of the same data by Skogvoll and Lindqvist (1999) concluded that the
occurrence of cardiac arrest is reasonably well modeled by an HPP, though with some minor
deviations from homogeneity. In the present example the relationship between outdoor air
temperature and the occurrence of cardiac arrest is investigated. This is done by regarding
inter-event times to be independent and exponentially distributed with a hazard rate λ(x)
depending on the temperature x. Assuming temperature to be varying relatively slowly this
seems to be a reasonable model, although an NHPP model may seem more direct. The main
finding of a more sophisticated analysis of the data (Kvaløy, 1999) coincides with the result
of the simple analysis presented here. The average temperature on the day of a cardiac arrest
is used as covariate for the next period between cardiac arrests. A total of 449 cardiac arrests
where reported during the five years period.

Testing the significance of the covariate effect of temperature by using the Anderson-
Darling test for covariate effect (6) yielded a p-value of 0.002. Several plots of the estimated
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Figure 3: Analysis of cardiac arrest occurrence versus air temperature. The left plot shows the
estimated hazard rate function obtained using a constant smoothing parameter on the x-axis,
with the location of the observations along the curve displayed by the dots. The middle plot
shows 250 bootstrap curves obtained by resampling observations (original estimate shown as
white curve). The right plot shows the estimated correspondence function s̃(x).

model are displayed in Figure 3. The estimated hazard rate function clearly indicates a
decreasing hazard for increasing temperature. The smoothing parameter hx = 15 was chosen
by a likelihood cross validation criterion. The bootstrap curves indicate little variability in
the estimated hazard rate in the middle temperature range where most of the observations
are located, while there is large variability at the boundaries as expected. The correspondence
function plot reflects the temperature distribution and the hazard function, and also displays
the small number of observations near the boundaries. No particular outliers are identified
by the plot.
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3 APPLICATIONS IN COX REGRESSION

3.1 Model checking and model fitting in classical Cox-regression.

An interesting application of the covariate order method is in model checking for the classical
Cox (1972) proportional hazards model, α(t|x) = α0(t) exp(βx), where α0(t) is a baseline
hazard function, x is a covariate vector and β is a vector of regression coefficients. Under
the model assumptions it is well known that A0(Ti) exp(βXi), i = 1, . . . , n, where A0(t) =∫ t
0 α0(u)du, is a censored sample from the exponential distribution with parameter 1. The Cox-

Snell residuals (Cox and Snell, 1968) are defined as ri = Â0(Ti) exp(β̂Xi), i = 1, . . . , n, so if the
model is correct, then the sample (r1, δ1), . . . , (rn, δn) is expected to behave approximately
as a censored sample from the exponential distribution with parameter 1. The Cox-Snell
residuals are mainly used to assess an overall fit by checking whether (r1, δ1), . . . , (rn, δn) is
compatible with a (censored) sample from an exponential distribution. However, we shall
see that the covariate order method allows one in an easy way to do further analyses of the
Cox-Snell residuals, for example to check for (unexpected) relationships between residuals and
variables like individual covariates, risk score and observation number.

For instance, for each single covariate Xk, say, one may fit an exponential regression model
to the data (r1, δ1,X1k), . . . , (rn, δn,Xnk), where Xik is the kth covariate for the ith obser-
vation unit. The covariate order method gives an estimated hazard rate as a function of Xk

which, if the model is correct, is expected to be approximately constant at 1. Deviations from
a constant hazard rate can be tested more formally by the Anderson-Darling test described
in Section 2.5. This approach is an alternative to the common plotting of residuals against
covariates etc. which is routinely done in ordinary linear regression models. A similar plotting
of Cox-Snell residuals is of course possible and is sometimes done, but may be misleading due
to censored observations.

A related application is to make plots of log hazard rates against covariates not included
in the model. Such plots can reveal whether these covariates should be included in the model,
and in this case indicate the appropriate functional form of the covariate. This is a simple
and intuitive alternative to the plotting of martingale residuals (Therneau, Grambsch and
Fleming, 1990) commonly used for this purpose. A somewhat related approach, but using
nonparametric Poisson regression instead of exponential regression, was used by Grambsch,
Therneau and Fleming (1995), see also Therneau and Grambsch (2000, chap. 5).

An alternative approach for suggesting functional form of the covariates is to fit a complete
nonparametric model including all the covariates. This is discussed below.

3.2 Nonparametric Cox-regression

The covariate order method for exponential regression can fairly easily be extended to esti-
mation of g(x) in the generalized Cox-model α(t|x) = α0(t) exp(g(x)) where g(x) in principle
is any function of the covariates. The basic idea is that for an uncensored observation Z,
A0(Z) exp(g(X)) is exponentially distributed with parameter 1, so A0(Z) is exponentially
distributed with parameter exp(g(X)). This motivates the following algorithm:

1. Find an initial estimate Â0(t) of the cumulative baseline hazard function A0(t).

2. Transform T1, . . . , Tn to Â0(T1), . . . , Â0(Tn).
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3. Estimate g(x) from (Â0(T1), δ1,X1), . . . , (Â0(Tn), δn,Xn) using the covariate order method
for exponential regression.

4. Find a new estimate of A0(t) from (T1, δ1, ĝ(X1)), . . . , (Tn, δn, ĝ(Xn)).

5. Repeat 2-4 until convergence

The integrated baseline hazard function A0(t) can for instance be estimated by the Breslow
estimator (Breslow, 1972). Numerical convergence of the algorithm is very fast. A similar
iterative algorithm but with a different approach for estimating g(x) was used by Gentleman
and Crowley (1991). Further details on this application of the covariate order method are
given in Kvaløy and Lindqvist (2003).

3.3 Example: PBC data

We illustrate the use of covariate ordering in the classical Cox-model by considering model
fitting and model checking for the PBC data from the Mayo Clinic. PBC (primary biliary
cirrhosis) is a fatal chronic liver disease, and out of the 418 patients followed in the study, 161
died before study closure. A listing of the data can be found in Fleming and Harrington (1991).
The final model proposed by Fleming and Harrington (1991) includes the five covariates age,
edema, log(bilirubin), log(protime) and log(albumin).

For a demonstration of residual plotting we will look closer at the covariate bilirubin. First

p-value=2e-6
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log(bilirubin)
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Figure 4: Residual analysis of PBC data. Plot of the log of the estimated hazard rate of the
Cox-Snell residuals against bilirubin in a model using bilirubin on its original scale (left) and
the same plot against log(bilirubin) in a model using log(bilirubin) (right).

we fitted a Cox-model including the five covariates mentioned above, but where the covariate
bilirubin was included without making the log transformation. The left plot in Figure 4 shows,
for this model, the log of the estimated hazard rate of the Cox-Snell residuals against bilirubin.
The p-value reported in the plot was calculated using the Anderson-Darling test presented in
Section 2.5. The low p-value certainly shows a significant deviation from constancy, which is
also clear from the plot. Thus the covariate is not well modeled. The right plot shows the
log of the estimated hazard rate of the Cox-Snell residuals against log(bilirubin) in a model
where the bilirubin covariate was added as log(bilirubin). We see that the bilirubin covariate
now seems to be much better modeled.

As explained in Section 3.1, one may use similar plots to suggest the functional form of
covariates before they are entered into the model. Figure 5 displays plots of the log of the
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estimated hazard rate of the Cox-Snell residuals from an empty model versus, respectively,
age, bilirubin and log(bilirubin). Note that in this case the Cox-Snell residuals are simply
Â0(Ti), where Â0(·) is the Nelson-Aalen estimator of the cumulative hazard in the empty
model. The (approximate) straight line seen for the plot against age in Figure 5 suggests

p-value=1.2e-6
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Figure 5: Functional form analysis in PBC data. Plots of the log of the estimated hazard
rate of the Cox-Snell residuals from an empty model versus respectively age, bilirubin and
log(bilirubin). The location of the observations along the curves are displayed by the dots.

that age can be added directly in the Cox-modeled, while the non-linear behavior of the plot
against bilirubin suggests that a transformation should be made for this covariate. The plot
against log(bilirubin) indicates that this covariate is much better modeled if it is transformed
to log-scale.

4 CONCLUSIONS

We have presented a new method for nonparametric censored exponential regression, and
shown some of its applications. While we have given emphasis to applications in Cox-
regression, one may think of similar applications in any model with (approximately) exponen-
tially distributed residuals, or in other cases where data can be transformed to (approximate)
exponentiality.

The covariate order method has the advantage over some of its competitors that it is
simple, flexible, intuitive and numerically very robust. Moreover, simulations (not reported
here) have shown the performance in finite samples to be very similar to that of standard
local linear likelihood methods.
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A PROOFS

A.1 Proof of Theorem 2.1

In this proof and in the proof of Lemma 2.1, the Glivenko-Cantelli theorem, and the Cheby-
chev, Markov and Cauchy-Schwarz inequalities will be used repeatedly. See Karr (1993) for
a general reference.

Define the process S∗1 , . . . , S∗n by S∗j =
∑j

i=1
1
nTi. Let N∗

n(s) =
∑n

i=1 I(S∗i ≤ s) be
the counting process counting events in this process. Further, let Fn∗

s = σ{X1, . . . ,Xn} ∪
σ{(Tj , δj) :

∑j
i=1 Ti/n ≤ s} for s ≥ 0. The intensity of the process S1, . . . , Sr conditional on

the history Fn∗
s is ρn(s|Fn∗

s ) = nλ(XN∗
n(s)+1). Since Fn

s ⊆ Fn∗
s it follows from the innovation

theorem (Andersen et al. 1993, p. 80), that

ρn(s|Fn
s )/n = E[λ(XN∗

n(s)+1)|Fn
s ]. (7)

Assume that it can be proved that XN∗
n(s)+1

p→ η(s) uniformly. Then using Markov’s inequality
we get

P ( |ρn(s|Fn
s )/n− λ(η(s))| > γ) = P ( |E[λ(XN∗

n(s)+1)− λ(η(s))|Fn
s ]| > γ)

Markov
≤ 1

γ
E( |E[λ(XN∗

n(s)+1)− λ(η(s))|Fn
s ]| ) ≤ 1

γ
E(E[ |λ(XN∗

n(s)+1)− λ(η(s))| |Fn
s ])

≤ 1
γ

E[ |λ(XN∗
n(s)+1)− λ(η(s))| ]

It now easily follows by the boundedness of λ(x) and the assumed uniform convergence of
XN∗

n(s)+1 that |ρn(s|Fn
s )/n − λ(η(s))| p→ 0 uniformly in s.

It remains to prove that XN∗
n(s)+1 really converges uniformly in probability to η(s). Since

T = min(Z,C), given the covariate X = x, we have that

fT (t|x) = fC(t|x) exp(−λ(x)t) + λ(x) exp(−λ(x)t)(1 − FC(t|x)). (8)

With the assumption 0 < a ≤ λ(x) ≤ M < ∞ for all x, and the assumption that the censoring
distribution for all x has finite first and second order moments, it follows from (8) that there
exist numbers Emin, Emax and Vmax such that

0 < Emin ≤ E(T |x) ≤ Emax < ∞, for all x,

0 < Var(T |x) ≤ Vmax < ∞, for all x.
(9)

We proceed by first assuming that X is uniformly distributed on [0, 1]. Let a point w on the
s-axis be fixed in the following, and define I, I0, I1 and η(w) by the following relations

I : S∗I−1 ≤ w < SI∗

I0 :
∑I0−1

i=1
1
nE(T |Xi) ≤ w <

∑I0
i=1

1
nE(T |Xi)

I1 :
∑I1−1

i=1
1
nE(T | i

n+1) ≤ w <
∑I1

i=1
1
nE(T | i

n+1)

η(w) :
∫ η(w)
0 E(T |v)dv = w (10)
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In particular I = N∗
n(w) + 1. By the triangle inequality

|XI − η(w)| ≤ |XI −
I

n + 1
|+ | I

n + 1
− I0

n + 1
|+ | I0

n + 1
− I1

n + 1
|+ | I1

n + 1
− η(w)|

= A1 + A2 + A3 + A4.

What remains is to prove that each of A1, A2 and A3
p→ 0 and A4 → 0 uniformly.

(A1
p→ 0): This follows by the Glivenko-Cantelli theorem which states that if Fn is the

empirical distribution function based on n i.i.d. observations from F ≡ FX , then supx |Fn(x)−
F (x)| a.s.→ 0. Since F (x) = x; 0 ≤ x ≤ 1, we have F (Xi) = Xi, while Fn(Xi) = i

n . Thus,
|XI− I

n | = |F (XI)−Fn(XI)| ≤ supx |F (x)−Fn(x)| a.s.→ 0, which implies that A1
p→ 0 uniformly.

(A2
p→ 0): Let d ≥ 2 be an integer. Then

P (I ≥ I0 + d|X1 = x1, . . . ,Xn = xn)

= P
(
S∗I0+d−1 ≤ w|x1, . . . , xn

)
≤ P

(
S∗I0+d−1 ≤

I0∑
i=1

1
n

E(T |xi)|x1, . . . , xn

)

≤ P


|S∗I0+d−1 −

I0+d−1∑
i=1

1
n

E(T |xi)| ≥
I0+d−1∑
i=I0+1

1
n

E(T |xi)|x1, . . . , xn




Chebychev
≤

∑I0+d−1
i=1

1
n2 Var(T |xi)(∑I0+d−1

i=I0+1
1
nE(T |xi)

)2 ≤ Vmax(I0 + d− 1)/n2

(d−1
n Emin)2

≤ n

(d− 1)2
Vmax

E2
min

Since the upper bound on the conditional probability is not a function of x1, . . . , xn this
implies that the inequality also holds for the unconditional probability P (I ≥ I0 + d). By
choosing d = [n3/4] we get P (I ≥ I0 + [n3/4]) ≤ cn−1/2 for a suitable constant c. A similar
calculation gives P (I ≤ I0 − [n3/4]) ≤ cn−1/2. Hence

P (| I

n + 1
− I0

n + 1
| ≤ [n3/4]

n + 1
) ≥ 1− c√

n
.

so | I
n+1 −

I0
n+1 |

p→ 0 uniformly in w.

(A3
p→ 0): A key step in the following is the observation that since λ′(x) ≤ D and

fC(t|x) by assumption also has finite first derivative, this implies that there exist a B such
that |E(T |x1) − E(T |x2)| ≤ B|x1 − x2|. Also recall that if Xi is the ith order statistic of n

independent identically uniformly distributed variables on [0,1], then Var(Xi) = i(n−i+1)
(n+1)2(n+2)

≤
1

4(n+2) . Thus for an integer d,

P (I0 > I1 + d) = P

(
I1+d∑
i=1

1
n

E(T |Xi) < w) ≤ P (
I1+d∑

1

1
n

E(T |Xi) <

I1∑
1

1
n

E(T | i

n + 1
)

)

≤ P


| I1+d∑

1

(
1
n

E(T |Xi)−
1
n

E(T | i

n + 1
))| >

I1+d∑
I1+1

1
n

E(T | i

n + 1
)




Markov
≤

E|
∑I1+d

1 ( 1
nE(T |Xi)− 1

nE(T | i
n+1))|∑I1+d

I1+1
1
nE(T | i

n+1)
≤

B
n

∑I1+d
1 E|Xi − i

n+1 |
d
nEmin
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C.−S.
≤

B
∑I1+d

1

√
E(Xi − i

n+1)2

dEmin
=

Bn

2dEmin

√
n + 2

Proving the parallel inequality for P (I0 < I1 − d) and letting d = [n3/4] this implies that

P

(
| I0

n + 1
− I1

n + 1
| ≤ [n3/4]

n + 1

)
≥ 1− cn−1/4

for a suitable constant c. Hence | I0
n+1 −

I1
n+1 |

p→ 0 uniformly.
(A4 → 0): Observe that |

∑I1
i=1

1
nE(T | i

n+1) − w| ≤ 1
nE(T | I1

n+1) ≤ 1
nEmax which implies

that
∑I1

i=1
1
nE(T | i

n+1) → w =
∫ η(w)
0 E(T |v)dv uniformly. Note that η(w) is uniquely defined

since E(T |v) > 0 for all v, and it follows that I1
n+1 → η(w) uniformly.

This completes the proof that ρn(w|F)/n
p→ λ(η(w)) uniformly in w in the case of uni-

formly distributed covariates on [0,1].
For covariates X1, . . . ,Xn drawn from a general continuous distribution FX(·), let Ui =

FX(Xi) be transformed covariates which are now independent and identically uniformly dis-
tributed on [0,1]. Further let E?(T |u) = E(T |F−1

X (u)). Then (10) gives
∫ η?(w)
0 E?(T |u)du = w

which by substituting u = FX(x) and letting η(w) = F−1
X (η?(w)) can be written

∫ η(w)

F−1
X (0)

E(T |x)fX(x)dx = w (11)

Replacing η(w) with x and w with s(x) we get

s(x) =
∫ x

F−1
X (0)

E(T |v)fX(v)dv =
∫ ∞

−∞
I(v ≤ x)E(T |v)fX(v)dv

= E(I(X ≤ x)E(T |X)) = E(E(TI(X ≤ x)|X)) = E(TI(X ≤ x)).

A.2 Proof of Lemma 2.1

We can write

s̃(x) =
1
n

n∑
i=1

TiI(Xi ≤ x)

Noting that s(x) = E(s̃(x)) we have by Chebyshev’s inequality, for each fixed x and any ε > 0,

P (|s̃(x)− s(x)| > ε) ≤ Var(TI(X ≤ x))
nε2

≤ E(T 2)
nε2

≤ E(Z2)
nε2

which tends to 0 as n → ∞ since E(Z2) < ∞. In fact, we have E(Z2) = E[E(Z2|X)] =
E[2/λ(X)2] ≤ 2/a2. This proves the result.

A.3 Proof of Theorem 2.2

Let Nn(s) and m be defined as before. It follows from counting process theory, for example
Andersen et al. (1993), that Mn(s) = Nn(s)−Rn(s), where Rn(s) =

∫ s
0 ρn(u|Fn

u )du, is a local
square integrable martingale. The general expression for ρn(s|Fn

s ) is given in (7). Introduce
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the notation τn(s) = ρn(s|Fn
s )/n and Tn(s) = Rn(s)/n. The first part of the proof is to find

an estimator of τn(s) and to prove that this estimator is a uniformly consistent estimator of
τ(s) = limn→∞ τn(s) = λ(η(s)).

The fact that Mn(s) is a martingale also implies that

Mn(s) = Mn(s)/n = Nn(s)/n− Tn(s) (12)

is a martingale. Following the same reasoning as in the derivation of the Nelson-Aalen esti-
mator in Andersen et al. (1993, chap. 4) it follows from (12) that a natural estimator for
Tn(s) is T̂n(s) =

∫ s
0 dNn(u)/n and then a kernel estimator for τn(s) is

τ̂n(s) =
1
hs

∫ ∞

0
K(

s− u

hs
)
dNn(u)

n
=

1
nhs

r∑
i=1

K(
s− Si

hs
) (13)

By this an estimator of τn(s) is motivated, it only remains to prove its consistency as an
estimator of τ(s). It follows from (12) that

τ̂n(s) =
1
hs

∫ ∞

0
K(

s− u

hs
)dMn(u) +

1
hs

∫ ∞

0
K(

s− u

hs
)τn(u)du ≡ dn(s) + τ̃n(s)

By showing
|τ̂n(s)− τ̃n(s)| p→ 0 (14)

uniformly and
|τ̃n(s)− τn(s)| p→ 0 (15)

uniformly, uniform consistency of τ̂n(s) follows from the triangle inequality since uniform
convergence of |τn(s)− τ(s)| was proved in Theorem 2.1. For (14), first notice that by results
on stochastic integration and the fact that < Mn > is defined as the compensator of Mn2

it
follows (Andersen et al. 1993, chap. 4) that

Ed2
n(s) =

1
h2

s

∫ ∞

0
K2(

s− u

hs
)Ed < Mn > (u) =

1
h2

s

∫ s+hs

s−hs

K2(
s− u

hs
)
1
n

Eτn(u)du

=
1

nhs

∫ 1

−1
K2(v)Eτn(s− hsv)dv ≤ M

nhn

∫ 1

−1
K2(v)dv

Then Markov’s inequality gives

P (|τ̂n(s)− τ̃n(s)| > ε) = P (|dn(s)| > ε) ≤ Edn(s)2

ε2
≤ M

ε2nhn

∫ 1

−1
K2(v)dv → 0

For (15) the convergence follows from

|τ̃n(s)− τn(s)| = |
∫ 1

−1
K(v)(τn(s− hsv)− τn(s))dv|

≤
∫ 1

−1
|K(v)||τn(s− hsv)− τn(s)|dv

p→ 0

uniformly because

|τn(s − hsv)− τn(s)| ≤ |τn(s− hsv)− τ(s− hsv)|+ |τ(s)− τn(s)|+ |τ(s − hsv)− τ(s)|
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where the two first terms converge uniformly to zero in probability by Theorem 2.1 and where
the last term converges numerically uniformly to 0 by uniform continuity of λ(x).

This completes the proof that τ̂n(s) given in (13) is a uniformly consistent estimator of
τ(s). It now only remains to prove that replacing s by s̃(x) in (13) yields a consistent estimator
of λ(x). By the triangle inequality

|τ̂n(s̃(x))− τ(s(x))| ≤ |τ̂n(s̃(x))− τ(s̃(x))|+ |τ(s̃(x)) − τ(s(x))|

where the second part converges uniformly to 0 in probability by Lemma 2.1 and the uniform
continuity of τ(s). This completes the proof that λ̂(x) = τ̂n(s̃(x)) is a uniformly consistent
estimator of λ(x).
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