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Abstract

Consider a unit which can experience any one of k competing failure types, and
suppose that for each unit we observe the time to failure, T , and the type of fail-
ure, C ∈ {1, 2, . . . , k}. The case of observing the pair (T, C) is termed “competing
risks” in the statistical literature. After considering some examples we review basic
notation and theory of competing risks. In particular we consider the latent failure
time approach to competing risks in which the k risks are represented by potential
failure times T1, . . . , Tk where only the smallest, T = minj Tj , is observed together
with its index C = argminj Tj . In reliability studies, the marginal distributions
of the Tj are often of primary interest, but are unfortunately non-identifiable in
general. Additional, though non-testable, assumptions to obtain identifiability are
considered, as are bounds for the marginal distributions given in terms of observable
functions. The likelihood function of right censored competing risks data is given and
its consequences for both parametric and non-parametric estimation are explained.
Extensions of the classical theory of competing risks to more general Markov models
and to repairable systems are briefly discussed.

Keywords: Competing risks; Latent failure times; Reliability databases; sub-
distribution function; Cause-specific hazard function; Identifiability; Preventive main-
tenance; Repairable system.
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1 Introduction

Suppose that units under study can experience any one of several distinct failure types,
and that for each unit we observe both the time to failure and the type of failure. Failure
may here, for example, correspond to breakdown of a mechanical component where there
are several possible root causes for the failure, such as vibration, corrosion, etc. While this
is a typical case of a “competing risks” situation in reliability, the theory of competing risks
does not originate from reliability theory. In fact, it can be traced back to David Bernoulli’s
attempts in 1760 to disentangle the risk of dying from smallpox from other causes. This
is indeed a classical example of competing risks, where individuals are subject to multiple
causes of death. Similar applications occur in demography and actuarial science, usually
under the name of multiple-decrement analysis.

1.1 Formal definition of competing risks

Formally one observes the pair (T,C) where T > 0 is the time of failure and C ∈
{1, 2, . . . , k} represents the type of failure. It is thus assumed that there are k differ-
ent failure types, and that each failure can be classified as belonging to exactly one of the
k types. Note that “failure” is used as a generic term and may in practice correspond to
any event of interest depending on the application at hand. Also, “time” need not mean
calendar time, but can in principle be any suitable measurement which is non-decreasing
with calendar time, such as operation time, number of cycles, number of kilometers run,
length of a crack etc.

An intuitive way of describing a competing risks situation with k risks, is to assume
that to each risk is associated a failure time Tj, j = 1, ..., k. These k times are thought of
as the hypothetical failure times if the other risks were not present, and they are referred
to as latent failure times. When all the risks are present, the observed time to failure of the
system is the smallest of these failure times along with the actual cause of failure. Thus
by letting T = min{T1, ..., Tk} and C = c if T = Tc, we observe the pair (T,C) and we are
back to the formulation of the previous paragraph. Note that it is assumed that the Tc for
which minimum is attained is uniquely given.

1.2 Uses of competing risks in reliability and maintenance stud-
ies

Crowder [11, Ch. 1] gives some simple examples of the uses of competing risks in reliability
studies. One of these is taken from King [18] who studied data of breaking strengths of
certain wire connections. Two types of failure were defined (so k = 2): breakage at the
bonded end and breakage along the wire itself.

Mendenhall and Hader [22] presented data of times to failure for VHF communication
transmitter-receivers. Again two types of failures were considered: those confirmed on
arrival at the maintenance center and those unconfirmed.

Modern reliability databases usually distinguish between a large number of failure
modes, which suggests the use of methods from the theory of competing risks. Cooke
[8, 9] reviews some main styles in the design of reliability databases, as well as models and
methods for their analysis.

Failure modes are in databases often grouped into critical failures, degraded failures and
incipient failures. Cooke [8] points out that whereas critical failures are of primary interest
in risk and reliability calculations, a maintenance engineer is also interested in degraded
and incipient failures, while a component designer may be is interested in the particular
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component function that is lost and in the failure mechanisms. Each of these interests
leads to a different analysis, but they are all best solved by methods from competing risks.

Traditionally, competing risks were analyzed as if they were independent of each other.
This assumption appears to be dubious in applications like the ones mentioned above,
however. Even if assumptions of stochastic independence may often be justified by the
physically independent functioning of components, a dependence between risks may be
introduced by, for example, load-sharing between components or other shared common
factors such as working environment, manufacture and maintenance.

A simple case of dependent risks (i.e. dependent latent times T1, . . . , Tk) occur in the
case when a potential component failure at some time T1 may be avoided by a preventive
maintenance (PM) at time T2 (see [9], [4], [21]). The assumption that T1 and T2 are
independent is clearly unreasonable in this application, since the maintenance crew is
likely to have some information regarding the component’s state during operation, and
this insight is used to perform maintenance with the aim of avoiding component failures.
Thus we are faced with a case of dependent competing risks between the variables T1 and
T2. Note that the observable result is the pair (T,C), rather than the latent times T1 and
T2 themselves which are usually the times of primary interest. For example, knowing the
distribution of T1, the true failure time distribution, could be the basis for maintenance
optimization. However, as will be discussed later, in a competing risks case the marginal
distributions of the Tj are not identifiable from observation of (T,C) alone, unless specific
assumptions are made on the dependence between T1 and T2.

1.3 Basic literature on competing risks

The recent book by Crowder [11] gives a comprehensive review of the the theory and meth-
ods of competing risks. An older book devoted to the subject is David and Moeschberger
[12]. Several standard books on reliability and survival analysis contain chapters on com-
peting risks, for example Lawless [19], Kalbfleisch and Prentice [17], Nelson [26], Bedford
and Cooke [4] and Andersen et al. [2]. Among several review papers written on the subject
we mention Gail [14] and Moeschberger and Klein [24].

2 Model specification

The joint distribution of the pair (T,C) from an individual is completely specified by the
sub-distribution functions

Fj(t) = P (T ≤ t, C = j),

defined for t > 0, j ∈ {1, 2, . . . , k}. In the formulas given in the following, the ranges
of t and j will be as for the Fj(t), and will be mostly suppressed. The corresponding
sub-density functions, when they exist, are given by differentiation,

fj(t) = F ′

j(t).

The marginal distribution of T is given by the distribution function

F (t) = P (T ≤ t) =
k
∑

j=1

Fj(t)

or by the survival function
F̄ (t) = 1− F (t).
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Note that here and in the sequel, a bar above a capital letter means that this is the survival
function corresponding to the distribution function given without a bar. This applies also
to sub-distribution functions. Thus we define the sub-survival functions as

F̄j(t) = P (T > t, C = j).

The marginal distribution of C is given by

πj = P (C = j) = Fj(∞).

Note that then
Fj(t) + F̄j(t) = πj.

The distribution of (T,C) can alternatively be specified by the sub-hazard functions,
which when they exist are given by

λj(t) = lim
∆t→0

P (T ≤ t+∆t, C = j|T > t)

∆t
=
fj(t)

F̄ (t)
. (1)

It follows that

λ(t) =
k
∑

j=1

λj(t) (2)

is the hazard function of T . Moreover, from equation (1) follows that fj(t) = λj(t)F̄ (t)
which by integration gives the useful connection

Fj(t) =

∫ t

0

λj(u)F̄ (u)du. (3)

Next, defining the cumulative sub-hazard functions as

Λj(t) =

∫ t

0

λj(u)du

it is seen from (2) that Λ(t) =
∑k

j=1 Λj(t) is the cumulative hazard function of T . Thus
we have

F̄ (t) = e−Λ(t) = e−
∑k

j=1
Λj(t) =

k
∏

j=1

Ḡ∗

j(t) (4)

where we define
Ḡ∗

j(t) = e−Λj(t). (5)

Note that Ḡ∗

j(t) is a survival function (possibly with an atom at infinity), but that it is not
in general the distribution of any observable random variable. We shall see later, however,
that it is the marginal distribution of Tj under the model with independent latent failure
times.

The sub-hazard functions λj(t) have the intuitive interpretation as the failure rate from
a specific cause conditional on survival up to time t. It is also known under the names
mode-specific or cause-specific hazard function, and has in older literature been called the
crude hazard rate.
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2.1 Latent failure time representation

Consider again the representation where T = min{T1, ..., Tk} and C = c if T = Tc is
observed, with c assumed uniquely given. Let the joint survival function of T1, ..., Tk be
K̄(t1, . . . , tk) = P (T1 > t1, . . . , Tk > tk). Then the survival function of T can be evaluated
as F̄ (t) = K̄(t, t, . . . , t). The sub-density functions can also be calculated directly from the
joint survival function as

fj(t) = −

(

∂K̄(t1, . . . , tk)

∂tj

)

t1=...=tk=t

, (6)

and it further follows that

λj(t) =
fj(t)

S(t)
= −

(

∂ log K̄(t1, . . . , tk)

∂tj

)

t1=...=tk=t

. (7)

Let the marginal survival function of Tj be denoted Ḡj(t) = P (Tj > t) and let the
corresponding hazard rate function be hj(t) = −Ḡ′

j(t)/Ḡj(t). It is noted that in general
hj(t) and λj(t) are different and have different interpretations. While the former has
traditionally been called the net rate, the latter is the crude rate as mentioned before. It
will be seen later, however, that hj(t) = λj(t) for all t > 0 when the Tj are independent.

2.2 The identifiability problem

As already explained, the main interest in a competing risks analysis is often in the joint and
marginal distributions of the latent failure times T1, ..., Tk. The problem turns out to be,
however, that the distribution of the observable pair (T,C) does not in general determine
the distribution of the latent failure times. In standard terms, the joint and marginal
distributions of T1, ..., Tk are said to be non-identifiable from observation of (T,C). This
means that there are several different joint distributions of T1, ..., Tk which give rise to the
same distribution of (T,C). This fact was noted by Cox [10] for the case of two failure
causes, while Tsiatis [29] studied the general case.

The main result of Tsiatis [29] states that if the set of sub-distribution functions Fj(t)
is given for some model with dependent risks, then there exists a unique model with
independent risks yielding the same Fj(t). This model is defined by the joint survival
function

K̄(t1, . . . , tn) =
k
∏

j=1

G∗

j(tj), (8)

where the G∗

j(t) are given by equation (5). Thus, one cannot know, from observations of
(T,C) alone, which of the two models is correct, since they will both fit the data equally
well.

3 How to deal with the identifiability problem

In this section we consider ways of overcoming the identifiability problem under the latent
variable representation of competing risks. It should be stressed that this can only be done
by imposing additional restrictions in the model. These may be of various kinds, but one
should always have in mind that under observation of the pair (T,C), the assumptions will
always be non-testable.

5



3.1 Assuming independent risks

The classical assumption is that the risks act independently, so that the latent failure times
Tj are independent. It then follows from Tsiatis [29] (see above) that we have identifiability
of the distributions in question (under regularity assumptions), meaning that the marginal
distributions of the Tj now can be computed from the sub-distribution functions Fj(t).
In practice this means that the marginal distributions can be estimated in a consistent
manner from competing risks data. Furthermore, in the case of independence we can write
K̄(t1, . . . , tk) =

∏k
j=1 Ḡj(tj) and hence it follows from equation (8) that

Ḡ∗

j(t) = Ḡj(t)

and from equation (7) that
λj(t) = hj(t).

Thus in the independent risks case the Ḡ∗

j(t) are in fact the marginal survival functions of
the Tj.

3.2 Assuming a known copula for the latent variables

Zheng and Klein [32] generalized the result on identifiability in the independent risks case,
proving that the marginal distributions are identifiable when the dependence is given by
a known copula. Consider, as in Zheng and Klein [32], the case k = 2. Let K be the
joint distribution function of (T1, T2) while G1, G2 are the marginal distribution functions
of T1, T2, respectively. Then the copula of (T1, T2) is defined by

C(u1, u2) = K
(

G−1
1 (u1), G

−1
2 (u2)

)

; (u1, u2) ∈ [0, 1]× [0, 1].

It is well known (Nelsen [25]) that this is a joint distribution function on [0, 1]× [0, 1] with
uniform marginals. Note in particular that independence of T1, T2 leads to the so called
independence copula, C(u1, u2) = u1u2.

Zheng and Klein [32] proved (under regularity conditions) that if the copula C(·, ·) is
known, then the marginal distribution functions G1, G2 are uniquely determined by the
sub-distribution functions F1, F2. Thus, provided the copula is known, we are able to esti-
mate the marginal distributions from observations of (T,C). Note that the assumption of
independence can be interpreted as a case of knowing the copula, namely the independence
copula as defined above. In practice the copula may not be completely known, however,
but Zheng and Klein [32] suggested how to use partial knowledge of the copula to derive
bounds on the marginal survival functions.

3.3 Computing bounds for the marginal survival functions

Peterson [27] gave bounds for the joint distribution function K(t1, . . . , tk) and for the
marginal distribution functionsGj(t) = P (Tj ≤ t) in terms of the observable sub-distribution
functions Fj. The bounds for the marginal distribution functions are given by

Fj(t) ≤ Gj(t) ≤ F (t) (9)

which are easily verified. Peterson [27] showed, moreover, that these bounds are pointwise
sharp. They are not, however, functionally sharp. In fact, Crowder [11] found that the
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functions Gj(t)− Fj(t) need to be non-decreasing in addition to being non-negative. Sub-
sequently, Bedford and Meilijson [6] obtained the complete characterization of the feasible
marginal distribution functions Gj for a given set of sub-distribution functions Fj. They
showed in particular that the condition that the functionsGj(t)−Fj(t) are non-negative and
non-decreasing, is also sufficient, provided a subtle additional measure theoretic assump-
tion is satisfied. Note that when Fj and Gj are differentiable, this leads to the inequality

fj(t) ≤ gj(t) for all t > 0, (10)

where gj(t) is the marginal density function of Tj. We use this inequality in the following
example.
Example (adapted from Bedford and Meilijson [6]). Consider the model with k = 2 given by
constant sub-hazard functions λj(t) = λj, j = 1, 2. In this case Fj(t) = (λj/λ+) (1− e

−λ+t)
and F (t) = 1 − e−λ+t, where λ+ = λ1 + λ2. Assume now that T1 has an exponential
marginal distribution, so that G1(t) = 1− e−λt for some λ. The upper bound of inequality
(9) easily gives λ ≤ λ+. Further, the inequality (10) with j = 1 gives λ1e

−λ+t ≤ λe−λt for
all t > 0, which implies λ ≥ λ1 by letting t → 0. Thus we have shown that any feasible
value of λ must satisfy the inequality

λ1 ≤ λ ≤ λ+.

Bedford and Meilijson [6] in fact showed that the set of possible values is the half-open
interval [λ1, λ1 + λ2). Note that an assumption that T1 and T2 are independent leads to
λ = λ1. The example therefore shows that the independence assumption leads to the most
optimistic value of the failure rate λ among the ones that are possible when the dependence
is not specified. Williams and Lagakos [31] proved a corresponding result in a more general
setting.

3.4 Parametric identifiability

Note that the meaning of identifiability of marginal distributions as discussed above has
been in the non-parametric sense that the marginal distribution functionsGj can be derived
in terms of the sub-distribution functions Fj. If a parametric model is specified for the
latent failure times, then the identifiability problem is a completely different one since it
now has to do with identification of a finite set of parameters. Crowder [11, Ch. 7.7] and
Moeschberger and Klein [24] review models for which identifiability holds. Some examples
of parametric models for dependent latent variables are given in the next section.

4 Modelling of competing risks

4.1 Modelling of sub-distributions

4.1.1 Mixture models

These are models given by specifying sub-distribution functions of the form

Fj(t) = πjQj(t)
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for given (parametric) distribution functions Qj(t). Typically one might let Qj(t) corre-
spond to a Weibull distribution, so that

Q̄j(t) = exp{−

(

t

θj

)αj

.} (11)

4.1.2 Modelling sub-hazard functions

A common approach is to assume parametric models for the sub-hazard functions, for
example using Weibull hazards,

λj(t;αj, θj) =
αj
θj

(

t

θj

)αj−1

. (12)

Note that this model has fewer parameters than the model (11) since the latter needs a
specification of the πj in addition to the pairs (αj, θj).

4.1.3 Regression models

Let x be a vector of covariates for the unit under study. Two main approaches for regres-
sion modelling in survival analysis are proportional hazards modelling and accelerated life
modelling. The versions for competing risks can be given as follows.

Proportional hazards

Let the sub-hazard functions be given by

λj(t;x) = ψj(x)λ0j(t)

where ψj(x) is a positive function of the covariates. Usually such a function is on parametric
form, for example ψj(x) = exp{β′x} for a parameter vector β. The λ0j(t) are called
baseline sub-hazards. Sometimes one assumes that λ0j(t) = λ0(t) does not depend on j,
in which case T and C are stochastically independent.

Accelerated life model

The dependence of x is here through factors φj(x) which accelerate time in such a manner
that

Fj(t;x) = F0j(φj(x)t)

for baseline sub-distribution functions F0j(t) corresponding to φj = 1.

4.2 Modelling of latent variables

The traditional way of modelling dependent risks has been through specification of the joint
distribution function K(t1, . . . , tk) or the joint survival function K̄(t1, . . . , tk). Classical
examples are the bivariate normal and Weibull distributions considered by Moeschberger
[23] and for which there are no identifiability problems. Other examples are given in the
following.
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4.2.1 Bivariate exponential (Gumbel [15])

Let k = 2 and define
K̄(t1, t2) = exp{−λ1t1 − λ2t2 − νt1t2}.

Then λj(t) = λj+νt, so that the independent risks model giving the same sub-distribution
functions would have marginal survival functions Ḡ∗

j(t) = exp{−λjt − νt2/2}. However,

the true marginal survival functions corresponding to the given K̄(t1, t2) are Ḡj(t) =
exp{−λjt}. The dilemma is that it is not possible to distinguish between these two models
from observation of (T,C). Note, however, that for both models we have identifiability of
all the parameters λ1, λ2, ν.

4.2.2 Frailty models

A class of models, called “frailty models” (see Crowder [11, Ch. 3]) are obtained by as-
suming that T1, . . . , Tk are independent given a random “frailty” variable Z which varies
from unit to unit. More precisely, assume that Z is a positive random variable and that
conditionally given Z = z, the T1, . . . , Tk are independent with survival functions, respec-
tively, e−zHj(t) for given parametric functions Hj(t). In this case the joint survival function
of T1, . . . , Tk becomes

K̄(t1, . . . , tk) =

∫

∞

0

exp

{

−z
k
∑

j=1

Hj(t)

}

dV (z)

where V (z) is the distribution function of Z. As an example, letting V correspond to a
gamma-distribution with expected value 1 and variance δ, we get

K̄(t1, . . . , tk) =

(

1 + δ
k
∑

j=1

Hj(t)

)−1/δ

Note that when δ → 0 this tends to exp{−z
∑k

j=1Hj(t)} which is the model obtained

under independent risks. Also, if the Hj(t) are of the Weibull form (t/θj)
αj , we arrive at

the multivariate Burr distribution (see Crowder [11, p. 43]).

4.2.3 Preventive maintenance (PM) modelling

In subsection 1.2 we considered the case with k = 2 where T1, T2 are, respectively, the
time of critical failure of a component and the potential time of a PM. Cooke [7], [9]
introduced the notion of random signs censoring which is tailored for such cases. In our
notation the PM-time T2 is called a random signs censoring of the failure time T1 if the
event {T2 < T1} is stochastically independent of T1. Thus, random signs censoring means
that the event that the failure of the component is preceded by PM, is not influenced by
the time T1 at which the component fails or would have failed without PM. The idea is that
the component emits some kind of signal before failure, and that this signal is discovered
with a probability which does not depend on the age of the component. The interesting
fact is that random signs censoring implies identifiability of the distribution of T1.

Lindqvist, Støve and Langseth [21] suggested a model called the repair alert model
for describing the joint behavior of failure times T1 and PM-times T2. This model is a
special case of random signs censoring obtained by introducing a repair alert function
which describes the “alertness” of the maintenance crew as a function of time.
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5 Statistical inference

Consider the case where we have data of the form (T,C) for n independent observation
units. In practice such data are often right censored by some source independent of the k
given risks. For example, this could be a censoring due to a time limit of the experiment
(type I censoring). If the ith observation is non-censored, we observe both the lifetime ti
and the cause ci. On the other hand, if the ith observation is right censored at time ti, then
we do not observe ci and all we know is that T > ti. If we let δi = 0 if the ith observation
is censored and δi = 1 otherwise, we get the likelihood function

L =
n
∏

i=1

fci(ti)
δiF̄ (ti)

1−δi

Using equation (1) we can write this as

L =
n
∏

i=1

λci(ti)
δiF̄ (ti)

Further, writing λci(ti)
δi =

∏k
j=1 λj(ti)

δij , where δij = I(ci = j) when δi = 1 and δij = 0

when δi = 0, and then using equation (4), we arrive at (see Lawless [19, Ch. 9.1])

L =
k
∏

j=1

[

n
∏

i=1

g∗j (ti)
δijG∗

j(ti)
1−δij

]

≡

k
∏

j=1

Lj (13)

where g∗j (t) = λj(t)Ḡ
∗

j(t) is the density function corresponding to Ḡ∗

j(t). Thus we can write
L as a product of the likelihoods Lj, where Lj has the same form as the likelihood function
of a censored sample associated with the jth failure cause where all observations where C
is not observed to equal j are treated as censorings. This fact leads to a simplification of
parametric estimation problems if the sub-distributions are modelled by parameters which
are separate for each failure cause (for example the model (12)).

Equation (13) has, furthermore, important implications for non-parametric estimation.
In fact, the likelihood Lj is of the same form as the one leading to the usual Kaplan-Meier
estimator (see [2]) of a survival function under independent right censoring. This means in
particular that the “artificial” survival functions Ḡ∗

j(t) and hence Λj(t) = − log Ḡ∗

j(t), can
be estimated non-parametrically by the Kaplan-Meier estimator. Alternatively, one may
from the same reasoning estimate the Λj for each j using the Nelson-Aalen estimator ([2]).

In this case, denoting the resulting estimator by Λ̂j(t), it follows from equation (3) that
one may estimate the Fj non-parametrically by

F̂j(t) =

∫ t

0

ˆ̄F (u)dΛ̂j(u), j = 1, ..., k, . (14)

where ˆ̄F (t) is the ordinary Kaplan-Meier estimate of the survival function F̄ (t) of T . Note
that this estimator uses the censored data obtained by collapsing the k failure causes into
one single cause.

It should be noted that in the case of independent risks, the marginal survival distri-
butions are always consistently estimated by the Kaplan-Meier estimator for each of the
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risks. It is interesting to note that Zheng and Klein [32], in the case k = 2 and with a
known copula describing the dependence of T1 and T2, derive non-parametric estimators of
the marginal survival distributions which specialize to the Kaplan-Meier estimator in the
case of independent risks.

6 Beyond classical competing risks

6.1 Markov process models

Aalen [1] modelled the classical competing risks problem as a continuous-time Markov pro-
cess with one working state (“0”) and k absorbing failure states corresponding to the k
risks. More generally one may consider Markov processes with more complex state spaces
and again k absorbing states corresponding to the k failure types. This leads to the consid-
eration of multivariate phase type distributions, see Assaf et al. [3]. Hokstad and Frøvig
[16] considered failure models for periodically tested items where the failures are either
degraded or critical. Whitmore [30] discussed the use of first-passage-time distributions
connected with multidimensional Brownian motion as models for competing risks.

6.2 Competing risks in repairable systems

Consider a system where failures are classified in k different types. Until now we have
considered the case of non-repairable units observed until failure or PM. Now assume
that the unit is repaired after failure, then is put into operation again, and that the
process continues in this way. Suppose that, at each failure, the type of event is recorded.
Assume also that time durations of repair and maintenance can be disregarded, so that
the system is always restarted immediately after failure or maintenance action This leads
to the observation of a marked point process (S1, C1), (S2, C2), . . . with successive failure
times 0 < S1 < S2 < · · · and marks Ci in {1, 2, . . . , k}. The properties of such a process
depends on the repair strategy. For example, a perfect repair (renewal) of the system at
failures leads to independent and identically distributed pairs (Ti, Ci) where Ti = Si−Si−1
(i = 1, 2, . . .) and S0 = 0. We are hence back to the basic case considered in this article.
In general, however, the situation could be more complicated. Doyen and Gaudoin [13]
present a point process approach for modelling of imperfect repair in competing risks
situations between failure and PM. Bedford and Lindqvist [5] considered a series system
of k repairable components where only the failing component is repaired at failures. A
general setup for this kind of processes is suggested by Lindqvist [20].

7 Discussion

As argued in the article, the latent failure time approach to competing risks is particu-
larly useful in reliability applications. However, as risks will usually be dependent, the
identifiability problem occurs. Recall that although additional assumptions on the depen-
dence may lead to identifiability, these assumptions are non-testable from data of the form
(T,C). Prentice et al. [28] therefore rejected the latent failure time approach and instead
advocated the use of the observable sub-hazard functions in analyses of competing risks.
One may argue against this, however, that in practical applications it often makes good
sense to use ones information and prior beliefs in order to model the underlying probability
mechanisms beyond what is actually observable.
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On the other hand, an erroneous assumption of independent risks may lead to seriously
misleading conclusions. As noted by Cooke [8], such assumptions are often made in the
assessments of competing failure rates in reliability databases. One then assumes that for
each of the k failure causes, failures occur as independent Poisson processes. This implies,
however, that the rate of occurrence of each of the competing risks would be unaffected
by removing the others. For competing risks corresponding to critical failure and PM
this means that the rate of occurrence of critical failures would be unaffected by stopping
preventive maintenance activity, an assumption which is completely unreasonable. The
appropriate method would be to invoke a more careful modelling by competing risks, using
if possible all available information. More sophisticated methods for analysis of competing
risks in connection with repairable systems, as briefly mentioned in the previous section,
may be needed here.
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