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Simultaneous Modeling of Time to Failure and PM
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Z (PM)

0 X (failure time)

Competing risk problem:

X is the (potential) failure time of an item

Z is the time of a (potential) PM action before time X

Possible outcomes:

Failure at X, no PM, Z is not observed

PM at Z (< X), while X is not observed

Typical observations:

N independent pairs {min(X,Z), I(Z < X)} are observed,
represented as x1, ..., xm; z1, ..., zn where N = m+ n
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Cooke’s Random Signs Censoring
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Z (PM)

0 X (failure time)

Definition:

The event {Z < X} is independent of X

Motivation:

Suppose the item emits some warning of deterioration, prior to failure.
If warning signal is observed, then the item will be preventively maintained and the
PM variable Z is observed.

If the event of observing the signal is independent of the item’s age, then random
signs censoring is appropriate.
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Some Notation

FX(x) = P (X ≤ x) (Distribution function)

FZ(z) = P (Z ≤ z)

F ∗

X(x) = P (X ≤ x,X < Z) (Subdistribution function)

F ∗

Z(z) = P (Z ≤ z, Z < X)

F̃X(x) = P (X ≤ x|X < Z) (Conditional subdistribution function)

F̃Z(z) = P (Z ≤ z|Z < X)
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Some Notation

SX(x) = P (X > x) (Survival function)

SZ(z) = P (Z > z)

S∗X(x) = P (X > x,X < Z) (Subsurvival function)

S∗Z(z) = P (Z > z,Z < X)

S̃X(x) = P (X > x|X < Z) (Conditional subsurvival function)

S̃Z(z) = P (Z > z|Z < X)

Note that

S∗X(0) + S∗Z(0) = 1, S̃X(x) =
S∗X(x)

S∗
X
(0)

, S̃Z(z) =
S∗Z(z)

S∗
Z
(0)

Only the subdistribution and subsurvial functions are in general identifiable from
competing risk data

Under Random Signs Censoring we have by definition

S̃X(x) = P (X > x|X < Z) = P (X > x) = SX(x)

so that the marginal distribution of X is identifiable.
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A Condition for Random Signs Censoring

Functions H1, H2 on [0,∞) form a subsurvival pair if

H1, H2 are nonnegative, nonincreasing

limt→∞H1(t) = limt→∞H1(t) = 0

H1(0) +H2(0) = 1

THEOREM (Cooke, 1993): Let H1, H2 be a pair of continuous strictly monotone
functions forming a subsurvival pair. Then the following are equivalent:

There exists a pair (X,Z) of positive random variables such that
• {Z < X} is independent of X (random signs censoring)
• S∗X(x) = H1(x) for all x ≥ 0, S∗Z(z) = H2(z) for all z ≥ 0

H1(x)

H1(0)
>

H2(x)

H2(0)
for all x > 0
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Repair Alert Model
Definition:

The pair (X,Z) satisfies the requirements of the Repair Alert Model provided the
following two conditions both hold.
1. Random signs censoring, that is {Z < X} is independent of X
2. There exists an increasing function G(x) with G(0) = 0 such that for all

x > 0, P (Z ≤ z|Z < X,X = x) =
G(z)
G(x)

, 0 ≤ z ≤ x

The function G(z) is called the cumulative repair alert function. Its derivative
g(z) is called the repair alert function.

Motivation:

X = x

G(x)

Z = z

G(z)
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Identification of G(·) in Repair Alert Model
Recall assumptions:

{Z < X} is independent of X

P (Z ≤ z|Z < X,X = x) =
G(z)
G(x)

, 0 ≤ z ≤ x

From this:

F̃Z(z) = P (Z ≤ z|Z < X)

=

∫

∞

0
P (Z ≤ z|Z < X,X = x)P (x ≤ X ≤ x+ dx|Z < X)

=

∫

∞

0
min(

G(z)

G(x)
, 1) · fX(x)dx = FX(z) +G(z)

∫

∞

z

fX(x)

G(x)
dx

Differentiate:

f̃Z(z) = fX(z) + g(z)

∫

∞

z

fX(x)

G(x)
dx−G(z)

fX(z)

G(z)
= g(z)

∫

∞

z

fX(x)

G(x)
dx.

Combine:

F̃Z(z) = FX(z) +G(z)
f̃Z(z)

g(z)
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Identification of G(·) in Repair Alert Model
Basic formula:

F̃Z(z) = FX(z) +G(z)
f̃Z(z)

g(z)

Rearranging:

g(z)

G(z)
=

f̃Z(z)

F̃Z(z)− FX(z)
.

Integrating from fixed point a > 0:

∫ w

a

g(z)

G(z)
dz =

∫ w

a

f̃Z(z)

F̃Z(z)− FX(z)
dz

∫ G(w)

G(a)

dy

y
=

∫ F̃Z(w)

F̃Z(a)

dy

y − FX(F̃
−1
Z
(y))

.

G(w)

G(a)
= exp{

∫ F̃Z(w)

F̃Z(a)

dy

y − FX(F̃
−1
Z
(y))

}.

Hence, G(z) is identifiable from data, modulo a multiplicative constant.
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Extension of Cooke’s theorem

THEOREM: Let H1, H2 be a pair of continuous strictly monotone functions forming a
subsurvival pair. Then the following are equivalent:

There exists a pair (X,Z) of positive random variables and a nondecreasing
function G(x) with G(0) = 0 such that
• {Z < X} is independent of X

• For all x > 0, P (Z ≤ z|Z < X,X = x) =
G(z)
G(x)

, 0 ≤ z ≤ x

• S∗X(x) = H1(x) for all x ≥ 0, S∗Z(z) = H2(z) for all z ≥ 0

H1(x)

H1(0)
>

H2(x)

H2(0)
for all x > 0
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Nonparametric Estimation of G(·) in Repair Alert Model

Recall formula: G(w)
G(a)

= exp{
∫ F̃Z(w)

F̃Z(a)

dy

y−FX (F̃−1
Z

(y))
}.

Goal is to estimate this based on data x1, ..., xm, z1, ..., zn.

First define F̂X(t) =
i
m

for xi ≤ t < xi+1, i = 0, 1, ...,m.

Hence, with t = F̃−1
Z
(y):

F̂X(F̃
−1
Z
(y)) =

i

m
for F̃Z(xi) ≤ y < F̃Z(xi+1), i = 0, 1, ...,m.

Thus:

∫ F̃Z(xj)

F̃Z(x1)

dy

y − F̂X(F̃
−1
Z
(y))

=

j−1
∑

i=1

∫ F̃Z(xi+1)

F̃Z(xi)

dy

y − i/m
=

j−1
∑

i=1

ln
F̃Z(xi+1)− i/m

F̃Z(xi)− i/m
.

By estimating F̃Z(·) this finally gives the estimator:

Ĝ(xj)

Ĝ(x1)
=

j−1
∏

i=1

ˆ̃FZ(xi+1)− i/m

ˆ̃FZ(xi)− i/m
=

j−1
∏

i=1

# {zk : zk ≤ xi+1}/n− i/m

# {zk : zk ≤ xi}/n− i/m
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Nonparametric Estimation with Simulated Data

Failure time X is exponentially distributed, failure rate λ = 1

q = P (Z < X) = 0.5

Cumulative repair alert function is G(x) = x, i.e. Z given Z < X,X = x is uniform
on (0, x)

N = m+ n = 1000
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Parametric Inference for Repair Alert Model

Data:
x1, ..., xm; z1, ..., zn

We are interested in estimating

Density of X, fX(x) (for example exponential, Weibull, etc.)

Repair probability q = P (Z < X)

Repair alert functions g(x) or G(x)

Construction of likelihood function:

Likelihood contribution from an observation is under the repair alert model:

f(xi, X < Z) = (1− q)fX(xi) for xi

f(zi, Z < X) = qf̃Z(zi) for zi

= qg(zi)

∫

∞

zi

(fX(x)/G(x))dx
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An Exponential-Power Repair Alert Model

fX(x) = λe−λx, q = P (Z < X), G(x) = xβ

Likelihood contributions:

f(xi, X < Z) = (1− q)fX(xi) = (1− q)λe−λxi

f(zi, Z < X) = qg(zi)

∫

∞

zi

(fX(x)/G(x))dx

= qβzβ−1
i

∫

∞

zi

λe−λxx−βdx

= qλβ(λzi)
β−1

∫

∞

λzi

w−βe−wdw

Complete log-likelihood:

l(λ, β, q) = m ln(1− q) + n ln q + (n+m) lnλ+ n lnβ − λ
m
∑

i=1

xi +

n
∑

i=1

(β − 1) ln(λzi) +

n
∑

i=1

ln(

∫

∞

λzi

w−βe−wdw).

Maximum likelihood estimates are obtained by maximizing log-likelihood w.r.t. parameters
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The EM-algorithm in Exponential-Power Model

Augment data by assuming the X to be observed also when Z < X.

Likelihood contributions to complete likelihood are now simplified:

f(xi, X < Z) = (1− q)fX(xi) = (1− q)λe−λxi

f(xi, zi, Z < X) = qλe−λxi
βzβ−1

i

xβi

The resulting iterative EM-algorithm boils down to:

q̂ =
n

N

λ̂j+1 =
N

∑m
i=1 xi + (1/λ̂j)

∑n
i=1

∫

∞

λ̂jzi
w
−(β̂j−1)

e−wdw

∫

∞

λ̂jzi
w
−β̂j e−wdw

β̂j+1 =
n

∑n
i=1





∫

∞

λ̂jzi
ln(w)w

−β̂j e−wdw

∫

∞

λ̂jzi
w
−β̂j e−wdw

− ln(λ̂jzi)




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Simulated Example in Exponential-Power Model
N = m+ n = 100

Parameter True value Estimate Lower bound Upper bound
λ 1 0.9838 0.7621 1.2566

β 3 4.5301 1.5010 ∞

q 0.5 0.5700 0.4730 0.6670

Maximum likelihood estimates and approximate 95% confidence
intervals for simulated data
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The 95% confidence region for λ (horizontal axis) and β from the simulated data
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Example: VHF data (Mendenhall and Hader, 1958)

Times to failure for ARC-1 VHF communication transmitter-receivers of a single
commercial airline.

X = time to confirmed failure, m = 218

Z = time to unconfirmed failure (censoring), n = 107
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Example: VHF data (Mendenhall and Hader, 1958)
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Left: Estimated subsurvival functions for X, thin line, and Z, thick line

Right: Estimated conditional subsurvival functions for X, thin line, Z, thick line,
estimated Φ(t) = P (Z < X|X > t, Z > t), and the estimated CSF corresponding
to an independent exponential model

Null hypothesis of independent exponentials is accepted at p-value ≈ .15
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VHF data: Nonparametric Repair Alert Model
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VHF data: Fitted Exponential-Power Model

MODEL

Failure time X is exponentially distributed, failure rate λ

Cumulative repair function is G(x) = xβ

Parameter Estimate Lower bound Upper bound
λ 4.458 · 10−3 3.916 · 10−3 5.069 · 10−3

β 8.9809 3.0345 ∞

q 0.3292 0.2781 0.3803

Maximum likelihood estimates and approximate 95% confidence
intervals for parametric repair alert model
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Properties of Repair Alert Model
Time to next event, Y = min(X,Z):

FY (y) = FX(y) + qG(y)

∫

∞

y

fX(x)

G(x)
dx

Expected time to next event for general G(·):

E(Y ) = E(X)− qE

[

G(X)

G(X)

]

where G(x) =
∫ x

0 G(t)dt.

Expected time to next event for G(x) = xβ :

E(Y ) = E(X)

(

1−
q

β + 1

)

Expected cost per time unit in the long run if CPM , CCR are costs of PM and
failure, respectively:

qCPM + (1− q)CCR

E(X)
(

1− q

β+1

)
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Main Conclusions

The Repair Alert Model is a special case of Random Signs Censoring, obtainable
under the same conditions on the subsurvival distributions

As for Random Signs Censoring, the marginal distribution of the failure time X is
identifiable under the Repair Alert Model

The Repair Alert Function G(x) is easy to interprete and is identifiable from the
conditional subdistribution functions

The Repair Alert Function G(x) can be estimated from data both
nonparametrically and parametrically
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