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Purpose of talk

Explicit modeling of maintenance in repairable systems:
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Several failure mechanisms
Imperfect repair

Degraded failures

Preventive Maintenance (PM)
(scheduled/unscheduled)

Several failure mechanisms
Periodically tested components



Simultaneous Modeling of Time to Failure and PM
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Competing risk problem:

® X is the (potential) failure time of an item

® 7 is the time of a (potential) PM action before time X

Possible outcomes:

® Failure at X, no PM, Z is not observed
» PMat Z (< X), while X is not observed

Typical observations:

® N independent pairs {min(X, Z),1(Z < X)} are observed,
represented as x1, ..., tm; 21,...,2n Where N =m +n



Cooke’s Random Signs Censoring
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X (failure time)

Z (PM)

Definition:
® Theevent {Z < X} is independent of X
Motivation:

® Suppose the item emits some warning of deterioration, prior to failure.

If warning signal is observed, then the item will be preventively maintained and the
PM variable Z is observed.

If the event of observing the signal is independent of the item’s age, then random
signs censoring is appropriate.



Repair Alert Model
Definition:

® The pair (X, Z) satisfies the requirements of the Repair Alert Model provided the
following two conditions both hold.
1. Random signs censoring, that is {Z < X} is independent of X
2. There exists an increasing function G(x) such that for all z > 0,
P(Z<:Z <X, X=2)=¢4, 0<z<a
The function G(z) is called the cumulative repair alert function. Its derivative
g(z) is called the repair alert function.

Motivation:

G(X)

G(2)




Some Notation

P(X <x) (Distribution function)

P(Z < 2)

P(X <z, X<Z) (Subdistribution function)

P(Z <z 7Z<X)

P(X <z|X < Z) (Conditional subdistribution function)
(

Only the subdistribution functions are in general identifiable from competing risk

data

Under Random Signs Censoring we have by definition

~

Fx(2) = P(X < 2|X < Z) = P(X <) = Fx(x)

making F'x (x) identifiable.



Identification of G(-) in Repair Alert Model

Recall assumptions:

® (7 < X} isindependent of X
G(z)

® PZ<Z< X, X=2)= Gy 0<z<w
From this:
Fy(z) = P(Z<zZ<X)
= /OOP(ZSz\Z<X,X:x)P(zU§XSx—I—daz\Z<X)
0
= * minEE) e Vde — . A [T Ix@)
= [ i) fx@dr = Fx () +GG) [
Differentiate:
fz(2) = fx(2) + g(2) /OO fg((;;) dx — G(2) fg(;) = 9(2) /OO fg((;)) dz.
Combine:
fz(2)

Fz(z) = Fx(2) + G(z)

9(2)



Identification of G(-) in Repair Alert Model

Basic formula:
fz(2)

Fz(z) = Fx(2) + G(2) 4(2)

Rearranging:

g(z) fz(2)

G(z) ~ Fy(z)— Fx(2)

Integrating from fixed point a > 0, assuming G(a) > 0:

9(2) fZ(Z)
a / FZ ( )d

/G(w) dy /F‘z(w) dy
Ga) Y JPz) y—Fx(Fz'(y)

Glw) _ f Fz(w) dy
G(a) P Fra) y— Fx(F;'(v))

12

Hence, G(z) is identifiable from data, modulo a constant.



Nonparametric Estimation of Cumulative Repair Function

Let z1,...,zm and z1, ..., 2, be the observed X and ~Z.
Fx (t) is estimated by

(1) Fx(t): L for z; <t<z;y1, 1=0,1,...,m.
m

With t = F, ' (y) we get

. i 5 X ,
(2) FX(le(y)): — for Fz(z;) <y < Fz(xiy1), 1 =0,1,...,m.
Thus
(3)/ﬁ‘z(mj) dy j—lfﬁzmm dy jz‘ll Fz(ziq1) —i/m
= po pr— - p— n — - .
Fyz(x1) y_FX(Fz_l(y)) i1 Y Fz(x) y —i/m i—1 Fz(x;) —i/m

yielding the estimator

A i1 A )
@ G(z;) :jH Ff(fl?z'ﬂ) —i/m
G(z1) ;5 Fy(m) —i/m

The estimator for F(t) is
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Simulated example: Repair alert model

Failure time X is exponentially distributed, failure rate A =1

g=P(Z<X)=05

Cumulative repair function is G(x)

(0,z)
m + n = 1000

Cumulative Repair Alert Function

m+n=1000

9=0.5

X exponentially distributed
X independent of Z<X
Z|Z<X,X=x uniform on (0,X)

= x,l.e. Z given Z < X, X = x is uniform on

Log-Log Cumulative Repair Alert Function

log(G)
w

m+n=1000

X exponentially distributed
X independent of Z<X
Z|Z<X,X=x uniform on (0,x)

5

-3 -2 -1 0 1 2
log(time)



Parametric statistical inference for repair alert model

Suppose we observe N independent copies of the pair
{min(X, 2),I1(Z < X)}

This gives data L1y eeey Tom 21y ey Zmy

with obvious meaning, where n +m = N.

We are interested in estimating
® Density of X, fx (z) (for example exponential, Weibull, etc.)
® Repair probability ¢
® Repair function g(x)

LIKELIHOOD FUNCTION
Likelihood contribution from an observation is under the repair alert model:

flx;z X <Z) = (1—q)fx(x;) forz;
f(z,Z < X) = qfz(z) for z;

= g [ (Ux@)/G)de



An Exponential-Power Repair Alert Model

fx(x) =Xe 2%, qg=P(Z < X),G(z) = zP

Likelihood contributions:

flr;, X <Z) = (1—q)fx(z;)=(1-— q)Ae_Axi

[ 2<X) = age) [ Ux@)/Ga)ds

oo
— qﬁziﬁ_l/ Ae M Bdx
z

1

= qAﬁ(Azz‘)ﬁ_l/ w Pe Y dw
>\ZZ'

Complete log-likelihood:

(A 3B,q) :mln(l—q)—|—nlnq—|—(n—|—m)1n)\—|—nlnﬁ—)\2xi—|—
=1

n

> (6= Dn=) + Y 1n(/:o WP dw),

=1 =1 %



Simulated parametric example

®» N—m+n=100

Parameter | True value | Estimate | Lower bound | Upper bound
A 1 0.9838 0.7621 1.2566
G 3 4.5301 1.5010 00
q 0.5 0.5700 0.4730 0.6670

Maximum likelihood estimates and approximate 95% confidence
intervals for simulated data

The 95% confidence region for A (horizontal axis) and @ from the simulated data



The EM-algorithm — general description

YV is the observed data; X is a piece of unknown data; 0 is the parameter of interest; and
lc(0; ), X) is the hypothetical complete-data log-likelihood, defined for all 6 € €.

Starting with an initial parameter value 6(°) € Q, the EM algorithm repeats the following

two steps until convergence.

E-step: Compute 1) (9) = Ex 1y oti-1llc(0; Y, X)], where the expectation is taken
with respect to the conditional distribution of the missing data X" given the
observed data ), and the current numerical value U—1) is used in evaluating the
expected value.

M-step: Find #U) € Q that maximizes 1) (9).



The EM-algorithm in our model

Likelihood contributions to complete likelihood are now simplified:

fli, X <2Z) = (A—qfx(x)=(1—qg)re
B—1
flzi,zi,Z2 < X) = qle A% ﬁZiB
X

Resulting iterative algorithm:

. n
q = N
- N
Air1 = .
al R f;oz w_(ﬁj_l)e_wdw
Doz wi + (/) Y0n ————5
f?o w "Je~Wdw
Ajzz
~ n
Biy1 =

S| —In(Aj2;)




Example: VHF data (Mendenhall and Hader, 1958)

Times to failure for ARC-1 VHF communication transmitter-receivers of a single

commercial airline.

®» X — time to confirmed failure, m = 218

® 7 = time to unconfirmed failure (censoring), n = 107
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Null hypothesis of independent exponentials is accepted at p-value ~ .15

Example: VHF data (Mendenhall and Hader, 1958)
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Left: Estimated subsurvival functions for X, thin line, and Z, thick line

700

Right: Estimated conditional subsurvival functions for X, thin line, Z, thick line,
estimated ®(t) = P(Z < X|X > t, Z > t), and the estimated CSF corresponding
fo an independent exponential model



Estimated failure rate for X, VHF data

Assuming Failure rate for X
Repair Alert, X exponentially distributed 4.353 103
X, Z independent exponentials 3.092 - 1073
W

Bounds for the failure rate of X . Thick line: accounting for sampling fluctuations. Thin
line: without sampling fluctuations



VHF data: Nonparametric Repair Alert Model
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VHF data: Parametric Repair Alert Model

MODEL

® Failure time X is exponentially distributed, failure rate \

® Cumulative repair function is G(z) = =

Parameter Estimate Lower bound | Upper bound
.10=3 .10~3 . 103
A 4.458 - 10 3.916 - 10 5.069 - 10 Maximum likelihood
I} 8.9809 3.0345 00
q 0.3292 0.2781 0.3803

estimates and approximate 95% confidence

intervals for parametric repair alert model
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