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Abstract

The trend-renewal-process (TRP)is defined to be a time-transformed renewal pro-
cess, where the time transformation is given by a trend function λ(·) which is similar
to the intensity of a nonhomogeneous Poisson process (NHPP). A nonparametric
maximum likelihood estimator of the trend function of a TRP is obtained under
the often natural condition that λ(·) is monotone. An algorithm for computing the
estimate is suggested and examined in detail in the case where the renewal distri-
bution of the TRP is is a Weibull distribution. The case where one has data from
several systems is also briefly studied.
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1 Introduction

Failures of a repairable system are usually modeled by a stochastic point
process in time. The most common models are the renewal process (RP),
the homogeneous Poisson process (HPP), and the nonhomogeneous Poisson
process (NHPP).
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As is well known, the RP model assumes what is called “perfect repair”, indi-
cating that after each failure, the system is renewed to its original condition.
Of course, one would usually expect the system to improve after a repair.
In fact, we may have repaired or exchanged the failed part and possibly over-
hauled some damaged, but not yet failed parts. There are also situations where
repairing the system may cause detoriation, for example if some of the other
parts were damaged in the reparation. Yet, is a complete renewal reason-
able? A commonly used definition of a repairable system is that of “a system
which, after failing to perform one or more of its functions satisfactorily, can
be restored to fully satisfactory performance by any method, other than re-
placement of the entire system” (Ascher and Feingold [3]). It seems as if only
a complete replacement could fully justify the renewal assumption, though.

The NHPP model, on the other hand, assumes what is called “minimal repair”.
After each failure and following repair, the system is in the same state as it
was just prior to that failure. This is more plausible than the complete renewal
assumption. One could argue that the part which has failed and is repaired
or replaced is just a small part of the system, and the other parts are not
affected. Yet often the replaced part is not a minor part, or the repair may
affect some other parts of the system, to the better or the worse. This could
mean a small jump in the intensity, in either direction.

There is thus a need for models which allow the system to deteriorate (or
improve) over time, yet still allow for the possibility that the system could
have a drastic increase or decrease in its failure intensity just after a repair,
because of damage done, or weak spots removed. Several models have been
developed for this purpose (see for example Ascher and Feingold [3], Pham
and Wang [12], Finkelstein [9] and references therein.)

A class of models of this kind is the trend-renewal process (TRP), which was
defined and studied by Lindqvist, Elvebakk and Heggland [10]. This model
contains the RP and NHPP as special cases, and in a simple manner the TRP
fills the gap between the two extreme repair models. While parametric esti-
mation for TRP’s was considered in [10], the purpose of the present paper is
to consider nonparametric estimation in the TRP model under the assump-
tion of a monotonic trend in the occurrence of failures of the system. This is
often a reasonable assumption in reliability applications, where, for example,
a mechanical system is deteriorating due to ageing, while a software system is
improving due to fault correction.

The literature on reliability also contains interesting classes of models which
emerge from the classical imperfect repair model of Brown and Proschan [6].
Their model assumes that at the time of each failure a perfect repair occurs
with probability p and a minimal repair occurs with probability 1 − p. More
general suggestions were later given by Kijima (1989) and others, based on

2



the notion of virtual age of a system or component. The statistical analyses of
these models, however, usually assume that information on the repair action
is available at each failure in addition to the failure times, while the study
presented in this paper need information only on the failure times.

The paper is organized as follows. In Section 2 we give some basic definitions
and results, including the likelihood function of TRP data. Section 3 is the
main section, in which we derive the nonparametric maximum likelihood es-
timators. The properties of the estimators are studied via two examples in
Section 4. In Section 5 we sketch the derivation of a nonparametric estimator
for the case where more than one system is observed. Finally, some concluding
remarks are given in Section 6.

2 Definitions and preliminaries

Consider a repairable system, observed from time t = 0. Let N(t) be the
number of failures in (0, t], let Ti be the time of the i’th failure, where we
define T0 = 0, and let Xi be the time between failure number i− 1 and failure
number i, that is Xi = Ti − Ti−1. We assume that all repair times equal 0.
This assumption is reasonable if the repair times are negligible compared to
the times between failures, or if we let the time parameter be the operation
time of the system. For a general treatment of repairable systems, see Ascher
and Feingold [3] or Meeker and Escobar [11].

We next review the definitions of the most common point process models that
are used for repairable systems, and then we define the trend-renewal process
which will be the main model used in this paper.

2.1 Models for repairable systems

The homogeneous Poisson process, HPP(λ):

The process N(t) is an HPP(λ) if X1, X2, . . . are independent and exponen-
tially distributed with parameter λ.

The renewal process, RP(F ):

The process N(t) is an RP(F ) if X1, X2, . . . are independent and identi-
cally distributed with cumulative distribution function (cdf) F , where we as-
sume F (0) = 0. If F is the exponential distribution with parameter λ, then
RP(F )=HPP(λ).
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The nonhomogeneous Poisson process, NHPP(λ(·)):

Let λ(t), t ≥ 0 be a nonnegative function, called the intensity of the pro-
cess. The cumulative intensity function is then Λ(t) =

∫ t
0 λ(u)du. The process

N(t) is an NHPP(λ(·)) if the time-transformed process Λ(T1),Λ(T2), . . . is an
HPP(1). Note that if λ(t) ≡ λ, then NHPP(λ(·))=HPP(λ).

We are now ready to define the TRP. This process is a time-transformed RP
in the same way as the NHPP is a time-transformed HPP. We will use the
definition given in Lindqvist et al. [10]:

The trend-renewal process, TRP(F, λ(·)):

Let λ(t) be a nonnegative function on t ≥ 0, and let Λ(t) =
∫ t
0 λ(u)du. The pro-

cess N(t) is a TRP(F, λ(·)) if the time-transformed process Λ(T1),Λ(T2), . . .
is an RP(F ), that is if Λ(T1),Λ(T2) − Λ(T1),Λ(T3) − Λ(T2), . . . are indepen-
dent and identically distributed with cdf F . The distribution F is called the
renewal distribution, and λ(·) is called the trend function of the TRP.

Note that the representation TRP(F, λ(·)) is not unique, since a scale factor
can be moved from F to λ(·) (or back) in the following way: Let c > 0 be
a constant, and let Fc(x) = F (cx) and λc(t) = c−1λ(t) for all x and t. Then
TRP(F, λ(·)) = TRP(Fc, λc(·)).

It is easily seen that the TRP generalizes both the NHPP and the RP, since
TRP(1− e−x, λ(·)) = NHPP(λ(·)) and TRP(F, 1) = RP(F ).

2.2 The likelihood function for the TRP model

The conditional intensity function of a point process (Andersen et al. [1]) is
defined by

γ(t) = lim
∆t→0

P(failure in [t, t+∆t)|Ft−)

∆t
,

where Ft− is the history of the process N(t) up to, but not including time
t. The conditional intensity function will, in general, be stochastic. For an
NHPP(λ(·)) it is, however, nonstochastic, γ(t) = λ(t). In the case of an RP(F )
it is stochastic and given by γ(t) = z(t−TN(t−)), where z(·) is the hazard rate
corresponding to F , z(t) = d

dt
F (t)/(1− F (t)).

We obtain the conditional intensity function of a TRP(F, λ(·)) as follows:

γ(t)= lim
∆t→0

P(failure in [t, t+∆t)|Ft−)

∆t
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= lim
∆t→0

P(failure in RP(F ) in [Λ(t),Λ(t+∆t))|Ft−)

∆t

= lim
∆t→0

P(failure in RP(F ) in [Λ(t),Λ(t) + ∆Λ(t))|Ft−)

∆Λ(t)

∆Λ(t)

∆t

= z(Λ(t)− Λ(TN(t−))) · lim
∆t→0

Λ(t+∆t)− Λ(t)

∆t
= z(Λ(t)− Λ(TN(t−)))λ(t). (1)

Consider now a point process N(t), observed from time t = 0 to time t = τ ,
with corresponding failure times T1, T2, . . . , TN(τ) and conditional intensity
function γ(t). The likelihood function of the process is then given by (Andersen
et al. [1])

L = {
N(τ)∏
i=1

γ(Ti)}e
−

∫ τ

0
γ(u)du. (2)

The likelihood function of a TRP is obtained by substituting (1) into (2),
giving

L= {
N(τ)∏
i=1

z(Λ(Ti)− Λ(Ti−1))λ(Ti)}e
−

∑N(τ)

i=1

∫ Ti

Ti−1
z(Λ(u)−Λ(Ti−1))λ(u)du

· e
−

∫ τ

TN(τ)
z(Λ(u)−Λ(TN(τ)))λ(u)du

.

By making the substitution v = Λ(u)−Λ(Ti−1) and taking the log we get the
log likelihood function

l = lnL=
N(τ)∑
i=1

{ln(z(Λ(Ti)− Λ(Ti−1))) + ln(λ(Ti))−

Λ(Ti)−Λ(Ti−1)∫

0

z(v)dv}

−

Λ(τ)−Λ(TN(τ))∫

0

z(v)dv. (3)

3 Nonparametric estimation of λ(·)

Often, we know little about the shape of λ(·), or we may suspect that it has
a form which is difficult to describe as a single functional expression. Rather
than assuming a pre-given functional form of λ(·), we may wish to let its shape
be suggested by the data only.
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Looking at the likelihood function (3), however, we see that the näıve non-
parametric MLE of λ(·) is

λ̂(t) =
N(τ)∑
i=1

δ(t− Ti),

where δ(·) is the Dirac delta function. This estimate gives an infinite value to
the likelihood function, but will rarely be particulary useful.

To obtain estimates which may be of some use, we obviously need to restrict
the class of functions to which λ(·) may belong. In many practical cases, we
will see that the systems we consider tend to fail more often when their oper-
ational time increases, or that they at least do not seem to improve over time.
This suggests that many systems have an increasing, or at least nondecreas-
ing, failure intensity. On the other hand some systems, for example software
systems, could be expected to have a nonincreasing failure intensity.

We will therefore restrict ourself to the case where λ(t) is monotone every-
where and continuous except at a finite number of points. We will first assume
that λ(·) is nondecreasing. The case where it is nonincreasing is very similar,
though, and will be considered at the end of the next subsection.

3.1 A monotone nonparametric maximum likelihood estimator (NPMLE) of
λ(·)

Bartozyński et al. [4] derived a nondecreasing NPMLE of λ(·) for an NHPP.
We extend this approach to the TRP.

More specifically, we seek to maximize the log likelihood function l given in (3)
under the condition that λ(·) belongs to the class of nonnegative, nondecreas-
ing functions on [0, τ ]. The optimal λ(t) must then consist of step functions
closed on the left with no jumps except at some of the failure time points.

To see this, suppose λ̄(t) is a nondecreasing function which maximizes l in (3).
Look at the interval [Tk−1, Tk) for some fixed k, 1 ≤ k ≤ n+1, where we define
Tn+1 = τ . Let v =

∫ Tk
Tk−1

λ̄(u)du. If we now choose λ(t) ≡ v/(Tk − Tk−1) on

[Tk−1, Tk), then obviously
∫ Tk
Tk−1

λ(u)du also equals v, leaving all the terms of

l unchanged except the term lnλ(Tk−1). But clearly λ(Tk−1) ≥ λ̄(Tk−1) with
equality only if λ̄(t) ≡ λ(t) on [Tk−1, Tk). So unless λ̄(t) is constant on every
interval of the form [Tk−1, Tk), it is possible to increase l without violating the
nondecreasing property.

Now let n = N(τ), let λi = λ(Ti), i = 0, 1, . . . , n, let Xi = Ti − Ti−1,
i = 1, 2, . . . , n and let Xn+1 = τ − Tn. The problem of maximizing l is then
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simplified to the problem of maximizing

l′ =
n∑

i=1

{ln z(λi−1Xi) + lnλi −

λi−1Xi∫

0

z(v)dv} −

λnXn+1∫

0

z(v)dv, (4)

subject to 0 ≤ λ0 ≤ λ1 ≤ . . . ≤ λn. (See also [4].)

To proceed from here, we need to make some assumptions concerning z(·).
Unfortunately, unless we choose z(·) to be constant, thus assuming that the
process is an NHPP, it turns out to be difficult to obtain maximum likelihood
estimates of both z(·) and λ(·) simultaneously. In some cases, however, if we
choose a parametrization of z(·), it might be possible to obtain estimates by an
iteration technique: One starts by guessing the values of the parameters, then
maximizes the log likelihood function given these values to obtain an estimate
of λ(·), and an estimate of the parameters is then obtained by maximizing
the log likelihood function using the estimate of λ(·). The process is continued
until convergence.

3.2 Assuming a Weibull distribution for F

We illustrate the above procedure by an important, yet relatively simple exam-
ple. Let then z(·) be the hazard rate corresponding to a Weibull distribution,

z(t) = ab(at)b−1 for a, b > 0

Here we put a ≡ 1 due to the nonuniqueness property of the TRP (Section
2.1).

Our problem then is to maximize (4), which now becomes

l′(b, λ0, . . . , λn)=
n∑

i=1

{ln[b(λi−1Xi)
b−1] + lnλi − (λi−1Xi)

b} − (λnXn+1)
b

=n ln b+
n∑

i=1

{(b− 1) lnλi−1 + (b− 1) lnXi + lnλi − λb
i−1X

b
i } − λb

nX
b
n+1

=n ln b+ (b− 1)
n∑

i=1

lnXi + (b− 1) lnλ0 − λb
0X

b
1

+
n−1∑
i=1

{b lnλi − λb
iX

b
i+1}+ lnλn − λb

nX
b
n+1. (5)

Now suppose that the value of b is known. Let Di = Xb
i+1, i = 0, 1, . . . , n. Let

further C0 = (b−1)/b, Cn = 1/b and Ci = 1 for i = 1, 2, . . . , n−1. Let ai = λb
i ,
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i = 0, 1, . . . , n. Then the problem of maximizing (5) (for given b) simplifies to

max
a0,a1,...,an

n∑
i=0

{Ci ln ai −Diai}

subject to 0 ≤ a0 ≤ . . . ≤ an. (Note that with the possible exception of C0,
which may be zero or negative, and Dn, which may be zero, all C’s and D’s
are positive.)

The solution to this problem is given by

a0 = a1 = . . . = ak1 = min
0≤t≤n

∑t
j=0Cj∑t
j=0Dj

(6)

ak1+1 = ak1+2 = . . . = ak2 = min
k1+1≤t≤n

∑t
j=k1+1

Cj∑t
j=k1+1

Dj

(7)

...

where k1 is the value of t at which the minimum of (6) is attained, k2 > k1 is
the value of t at which the minimum of (7) is attained, etc. Continue this way
until kl = n

The problem is in fact a special case of the isotonic regression problem, see
for instance Robertson et al. [13, p. 39], while the method of solution leading
to the above is a special case of the “Minimum lower sets Algorithm”, [13, pp.
24-25].

Some remarks are appropriate at this stage. If there are more than one t
that all give the same minimum value, choose the biggest. This will not affect
the solution, but it will probably be computionally faster, and lead to strict
inequalities aki < aki+1. If b < 1, a0 will attain a negative value. Since we
have required a0 ≥ 0, the optimum value of a0 in this case will be 0. This,
unfortunately, gives max l′ = ∞. To see that the estimator obtained is the
MLE, impose the artificial constraint a0 ≥ δ > 0 upon the problem. This will
cause a0 = δ, thus ensuring a finite likelihood, but it will not affect any of
the other a’s if we choose δ small enough. Then, in the end, let δ → 0. If the
system is observed to the time of the n’th failure, τ = Tn, then Dn = 0 and
an =∞, also giving a infinite value of the likelihood function. In this case, we
may impose an ≤M <∞, and let M approach infinity in the end.

We now return to the problem of maximizing (5) when also b is unknown. The
iteration scheme goes as follows: Start by letting b = b(1), where b(1) is some
initial choice. Calculate the Ci and Di, then use (6-7) to find a

(1)
0 , a

(1)
1 , . . . , a(1)n .

This gives us our first estimate of λ(·), λ
(1)
i = (a

(1)
i )1/b

(1)
. Now use the fact that

the process Yi = Λ(Ti), i = 1, . . . , n is by assumption an RP(F ) to find a new
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estimate b(2) of b. To do this, define first

Y
(1)
i =

i−1∑
j=0

λ
(1)
j Xj+1, i = 1, 2, . . . , n+ 1

Under the assumption that this process is a (censored) RP(F ), where F (x) =
1− exp(−xb), the likelihood function is

L = {
n∏

i=1

f(Y
(1)
i − Y

(1)
i−1)}[1− F (Y

(1)
n+1 − Y (1)

n )]

and the log-likelihood function is

l=
n∑

i=1

{ln f(Y
(1)
i − Y

(1)
i−1)}+ ln[1− F (Y

(1)
n+1 − Y (1)

n )]

=
n∑

i=1

{ln f(λ
(1)
i−1Xi)}+ ln[1− F (λ(1)n Xn+1)]

=
n∑

i=1

{ln b+ (b− 1) ln[λ
(1)
i−1Xi]− [λ

(1)
i−1Xi]

b} − [λ(1)n Xn+1]
b

=n ln b+ (b− 1)
n∑

i=1

ln[λ
(1)
i−1Xi]−

n+1∑
i=1

[λ
(1)
i−1Xi]

b (8)

which, except for a constant term, is (5) using λ
(1)
0 , λ

(1)
1 , . . . , λ(1)n .

A new estimate b(2) is then obtained by maximizing (8) (numerically) with

respect to b. (If λ
(1)
0 = 0, then the process may be viewed as if it started at

time t = T1 instead of at time t = 0, and we may let the summation start
at i = 2, thus avoiding any problems. Also, if λn = ∞ , then τ = Tn and
λnXn+1 = 0.) Then use this b(2) to obtain a new estimate λ

(2)
i , i = 0, 1, . . . , n

of λ(·), then use this to find the estimate b(3) of b, and continue the process
until the difference between two consecutive estimates of b is smaller than a
given ε.

Because of the term (b − 1) lnλ0 in (5), which can be made arbitrarily large
by choosing both b and λ0 close to 0, there is a small problem concerning the
convergence of the iteration. As long as b is less than 1 and λ0 = 0 for every
iteration, we may simply ignore the troublesome term, and the iteration will
converge, because every time we obtain a new estimate of b (or λ(·)), this
estimate is the MLE conditioned upon the previous estimate of λ(·) (or b).
Thus with every new iteration, the unconditional log likelihood function (5)
will increase. And as long as b stays above 1 for every iteration, there is no
term in (5) that may cause problems, and the iteration converges by the same
argument as above.
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However, if b from one iteration to the next switches from a value below 1 to a
value above 1 (or opposite), we should suddenly include (or exclude) the term
(b − 1) lnλ0 in the log likelihood. This could easily lead to a relatively huge
change in the estimates, and b might drop below (or rise above) 1 again. And
the iteration procedure could start to oscillate between values of b on both
sides of 1.

To avoid this, we suggest the following modification: Start by assuming that
λ0 = 0, and ignore the term (b − 1) lnλ0. Go through the iteration. If the
value of b when it converges is below 1, stop, and use the estimates found.
If not, start again, this time including the term (b − 1) lnλ0. If the iteration
converges, use the estimates now found, if not, use the previous found values.

3.2.1 Nonincreasing λ(·)

In some cases, we would expect λ(·) to be nonincreasing rather than nonde-
creasing. An example could be software reliability; when a software error is
detected and corrected, we would not expect it to show up again, and the
system should be improving over time.

The method of obtaining a nonincreasing MLE of λ(·) is very similar to the
method just described for nondecreasing MLE. The estimator will still consist
of step functions with jumps only at some of the failure times, but it will be
left continuous instead of right continuous. Otherwise the algorithm suggested
will be almost the same:

Let λi = λ(Ti) and Xi = Ti − Ti−1, i = 1, 2, . . . , n + 1, where Tn+1 is defined
as τ . Looking at (3), it is obvious that the optimum value of λ(t) is zero for
t > TN(τ), i.e. λn+1 = 0. Thus the problem of maximizing (3) simplifies to the
problem of maximizing

l′ =
n∑

i=1

{ln z(λiXi) + lnλi −

λiXi∫

0

z(v)dv}

subject to λ1 ≥ . . . ≥ λn ≥ 0.

By assuming that z(·) is the hazard rate of a Weibull RP, we may proceed in
the same manner as we did earlier. We wish to maximize

l′(b, λ1, . . . , λn) = n ln b+ (b− 1)
n∑

i=1

lnXi +
n∑

i=1

{lnλb
i − λb

iX
b
i }

which actually is a simpler problem than the one we faced when λ(·) was
nondecreasing; this time there is no choice of b or λi that may give an infinite
likelihood. We may then use the same iteration scheme as in the previous
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section to obtain estimates of b and λi, the only difference being that we have
to solve the problem

max
a1,a2,...,an

n∑
i=1

{ln ai −Diai}

subject to a1 ≥ . . . ≥ an ≥ 0. (Where Di = Xb
i and ai = λb

i as before, while
Ci = 1, i = 1, 2, . . . , n.) The solution to this problem is similar to the one for
the nondecreasing case: e

a1 = a2 = . . . = ak1 = max
1≤t≤n

t∑t
j=1Dj

(9)

ak1+1 = ak1+2 = . . . = ak2 = max
k1+1≤t≤n

t− k1∑t
j=k1+1

Dj

(10)

ak2+1 = ak2+2 = . . . = ak3 = max
k2+1≤t≤n

t− k2∑t
j=k2+1

Dj

(11)

...

where k1 is the value of t at which the maximum of (9) is attained, k2 > k1 is
the value of t at which the maximum of (10) is attained, k3 > k2 is the value
of t at which the maximum of (11) is attained, etc. Continue this way until
kl = n.

4 Examples

Example 1: A simulated TRP

We simulated 200 failure times from a TRP with λ(t) = 0.01t0.5 and F (x) =
1− exp(−x3), and used both parametric estimation, assuming λ(t) = αβtβ−1

and F (x) = 1 − exp(−xb), and the nonparametric method suggested in the
previous section to estimate F and λ(·).

The parametric maximum likelihood estimates with approximate standard
deviations were computed using the approach of [10] and are given in Table 1.

It is now of interest to compare the estimates of λ(·) and b obtained by the
parametric and nonparametric methods, respectively.

The “nonparametric” estimate of b using the method of Section 3 is 3.269.
Estimates of bias and standard deviation of the estimator will be computed
by the method of bootstrapping in Section 4.1.

In order to compare the two estimates of λ(·) in a fair way, we scale the
parametric estimates of F and λ(·) to make the expectations corresponding to
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the parametric and the “nonparametric” estimates of F the same. As explained
in Section 2.1, a TRP(F, λ(·)) with

F (x) = 1− e−xb

and
λ(t) = αβtβ−1

has the same distribution as TRP(Fc, λc(·)) where

Fc(x) = F (cx) = 1− e−(cx)
b

and
λc(t) = c−1λ(t) = c−1αβtβ−1

for any c > 0.

If the expectation of F is µ, then the expectation of Fc is clearly µ/c. So if
we want the expectation of the scaled distribution Fc to equal a given number
m, typically the expectation of the nonparametric estimate of F , we have to
choose c = µ/m.

By the standard formula for the expectation of the Weibull distribution we
find the expectation of the parametric estimate of F to be Γ(1/3.024 + 1),
while the expectation of the “nonparametric” estimate is Γ(1/3.269 + 1). To
scale the parametric estimate we thus choose

c =
Γ(1/3.024 + 1)

Γ(1/3.269 + 1)
= 0.9963

In Figure 1 we plot the nonparametric estimate of λ(·) together with the

(scaled) parametric estimate λ̂(t) = c−1α̂β̂tβ̂−1, and in addition we plot the
corresponding cumulative functions. As we see, there is a good correspondence
between the parametric and nonparametric estimates.

To check the convergence of the nonparametric method, we used three different
starting values of b, 0.1, 1 and 10 respectively. In all three cases both b and λ(·)
converged to the same values. Using a convergence criterion that the difference
between to consecutive values of b should be less than 10−6 they all converged
within 8 iterations.

Example 2: U.S.S Halfbeak data

Meeker and Escobar [11, Table 16.4] display 71 times of unscheduled mainte-
nance actions for the U.S.S. Halfbeak number 4 main propulsion diesel engine.
Figure 2 shows the plot of cumulative failure number against time (in thou-
sands of hours of operation).
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From the figure it seems fairly obvious that the system is deteriorating, and
a nondecreasing λ(·) is a fair assumption, even if we might suspect that λ(t)
could be decreasing for t > 22. A parametric estimation using the power law
function λ(t) = αβtβ−1, on the other hand, does not (judging from Figure 2)
seem to be able to give a very good fit to this set of data. We will, however,
use this parametric model anyway for comparison with the nonparametric
approach. The parametric MLE’s are given in Table 2.

The “nonparametric” estimate of b is 0.937, giving a scale factor (see Example
1)

c =
Γ(1/0.762 + 1)

Γ(1/0.937 + 1)
= 1.1408.

Plots of both the scaled parametric and the nonparametric estimates of λ(t)
and Λ(t) are found in Figure 3. This time, however, the “nonparametric”
estimate of is so far from the parametric estimate that it probably is rather
meaningless to compare the different estimates.

The problem is of course that the parametric power law model does not fit
the data sufficiently well, as is indicated by the right panel plot of Fig. 3. A
standard confidence interval for b based on Table 2 (estimate ± 2 × stan-
dard deviation) does not include the value 1, hence we reject a null hypothesis
of NHPP. On the other hand, the “nonparametric” estimate of b is close to
1 (0.937) and hence indicates that an NHPP model still may be appropri-
ate, which is also reasonable for this type of data. Likewise is an increasing
trend function reasonable and a possible conclusion from this example is that
nonparametric estimation of the trend function and parametric estimation of
the renewal distribution is a reasonable approach, while a power law trend
function does not fit and hence makes the estimate of b also suspicious.

4.1 Bootstrap estimates of bias and standard deviation

Example 1 (continued)

A parametric bootstrapping (Efron and Tibshirani [8]) was performed by as-
suming that the failure times are time-truncated at the largest observation
which is 931.92. In order to obtain a bootstrap sample we then first drew a
sufficiently large number n of observations Y ∗

1 , Y
∗
2 , . . . , Y

∗
n from the Weibull cdf

F (x) = 1−exp(−x3.269). Then we used the transformation T ∗j = Λ̂−1(
∑j

i=1 Y
∗
i ),

where Λ̂(·) is our nonparametric estimate of Λ(·), to obtain a sequence of fail-
ure times T ∗1 , T

∗
2 , . . . , T

∗
n of which the ones below 931.92 were used as our

first bootstrap sample. This procedure was repeated 50 times, to give us 50
bootstrap samples.
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For each of the bootstrap samples we went through the same estimation pro-
cedure as we did with the original sample, to obtain the bootstrap estimates
b̂∗i and λ̂∗i (·), i = 1, 2, . . . , 50.

The bootstrap estimate of the standard deviation of b̂ is 0.209, which may
be compared to the normal theory estimate of the standard deviation in the
parametric case, which is 0.162 (Table 1). The estimates are reasonably close,
and we should also expect the former to be larger because of a less specified
model.

The mean of the bootstrap estimates, on the other hand, is 3.578, which could
indicate that our estimation is somewhat biased. The bootstrap estimate of
bias is thus 3.578− 3.269 = 0.309, which is rather large, in fact it is almost a
factor 1.5 times the estimated standard deviation. If we try to remove the bias
by subtraction, we get the bias-corrected estimate to be 3.269−0.309 = 2.960.
This is very close to both the “true value” of 3, and the estimated value in
the parametric case of 3.024. See for example [8] for a discussion on bias
corrections.

Figure 4 shows the original estimate of Λ(t) along with the estimated curves
from the 50 bootstrap samples, giving an indication of the variability of Λ̂(·).
(We have not scaled these estimates to make the expectation of all the boot-
strap estimates of F the same, as this would probably move some of the
variation from Λ(·) to the scale parameter c.) The figure seems to indicate a
relatively low degree of variation, slightly increasing with increasing t. Also,
our original estimate seems to be placed neatly in the middle of all the boot-
strap estimates, so we do not believe there is any particular bias in this case.

Example 2 (continued)

In this example we have data from a real system, and although we assumed
during the estimation that the renewal distribution is Weibull, we should sus-
pect that it could exhibit some non-Weibull behaviour. To weaken the effect
that a non-Weibull distribution may have on bootstrap samples, we chose not
to draw the Y ∗’s from the Weibull distribution F (x) = 1− exp(−x0.937), but
rather from the empirical distribution function

F̂ (x) =
number of Ŷi ≤ x

n

where Ŷi = Λ̂(Ti)− Λ̂(Ti−1), i = 1, 2, . . . , n, and n = 71 is the total number of
failure times.

Otherwise we proceeded in exactly the same manner as in Example 1. The
estimated standard deviation of b̂ is now 0.133, while the mean of the bootstrap
b’s is 1.016, giving an estimate of the bias, 1.016 − 0.937 = 0.079. Since this
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is small compared to the estimated standard deviation we do not perform a
bias correction (see [8]).

Figure 5 shows the original estimate Λ̂(·) and the bootstrap simulations of
Λ(·), and in this example the variability is rather large, particularly in the
area where Λ̂(·) starts to increase sharply. The variability is larger than in
Figure 4. This is probably due to having only 71 failure times, compared to
200 in Example 1, and presumably also due to the fact that we consider a real
system where certain changes apparently took place around t = 19.

Figure 5 also indicates that Λ̂(·) perhaps is underestimating the true Λ(·),
since most of the bootstrap curves apparently are below the NPMLE Λ̂(·). A
bootstrap evaluation of the standard deviation and bias of Λ̂(·) is possible,
but somewhat involved. We would have to calculate Λ̂∗(·)(t) for several values

of t, and then use interpolation to approximate Λ̂∗(·)(·) between these values.
We did this for only one value of t, t = 19.067, which is where the sharp
increase in Λ̂(t) starts. The bootstrap estimate of the standard deviation of
Λ̂(19.067) is 4.286, and the mean of the bootstrap estimates at this point is
16.122. Compared to Λ̂(19.067) = 17.228 we see that the estimate of bias is
16.122− 17.228 = −1.116 which is relatively small compared to the estimated
standard deviation. The apparent underestimation could be due to forcing
λ̂(·) to be nondecreasing and hence Λ̂(·) to be convex, while Figure 2 indicates
that λ(·) might be decreasing for large t.

5 Nonparametric estimation in the case of more than one system

Suppose we have data from more than one system, where systems are assumed
to be independent and follow identical TRP(F, λ(·)) laws. We are then faced
with the problem that the superposition of several trend-renewal processes is
not, in general, another trend-renewal process. Although it is still true that
the MLE of λ(·), when restricted to a monotone function, must consist of
step functions closed on the left with jumps only at some of the failure time
points, the method suggested for the case where we only had one system is
not applicable. However, if we have many systems, all observed on the same
time interval (0, τ ] we might be able to obtain a useful estimate of λ(·), based
on the convergence theorem of superimposed renewal processes (Drenick [7]).
This estimate will not, however, be the exact MLE of λ(·), except for the
special case where all the processes are NHPP’s.

Indeed, Drenick [7] showed that the superposition of n independent renewal
processes in time equilibrium is a homogenous Poisson process under certain
mild conditions when n → ∞. One might therefore argue that the superpo-
sition of a large number of RP’s, all observed over a long interval of time, at
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least could be approximated by an HPP. Although there are some problems
here, for example that the asymptotic HPP often will not be visible until after
some time t > 0 (see e.g. Arjas et al. [2]), we may use this approximation to
find a reasonable nondecreasing nonparametric estimator of λ(·) in the case
where we have more than one system.

Suppose we have n independent TRP(F, λ(·))’s observed on (0, τ ]. Let mj be
the number of failures on system j, let Tij, i = 1, 2, . . . ,mj, j = 1, 2, . . . , n
be the time of the i’th failure on system number j, and let vk, k = 1, 2, . . . , s
(where s =

∑n
j=1mj) be the (ordered) failure times of the superimposed pro-

cess.

Since the time-transformed processes Λ(T1j),Λ(T2j), . . . ,Λ(Tmjj), j = 1, 2, . . . , n
all are RP(F )’s, we will assume that the superposition of these transformed
processes can be approximated by an HPP with intensity n/µ, that is Λ(v1),Λ(v2), . . . ,Λ(vs)
is (approximately) an HPP(n/µ). Here µ is the expectation of F , which in the
following will be assumed to equal 1 (this can be done without loss of general-
ity by the definition of the TRP, see Section 2.1). Then from the definition of
an NHPP we see that the superimposed TRP may be approximated with an
NHPP(λ̄(·)), where λ̄(t) = nλ(t). We can then proceed as if this holds exactly
and find a nondecreasing estimate of λ̄(·) using the approach of Section 3 when
specialized to the NHPP case. This will give the desired estimate of λ(·).

6 Concluding remarks

The aim of this paper has been to develop useful nonparametric estimation
techniques for analysis of repairable systems, particularly when the systems
are modelled by trend-renewal processes.

A monotone NPMLE of λ(·) was developed in Section 3 for data given from a
single system. The estimator was computed assuming that the renewal distri-
bution F was a Weibull distribution function, and as shown by the examples
it performed well when compared to the parametric MLE. The Weibull dis-
tribution was chosen for the renewal distribution because it is important in
reliability analyses, and because it gives a mathematically simple model. In ad-
dition it implies a smooth connection with the exponential distribution which
is the distribution which is inherent in an NHPP assumption. It will, though,
be of interest to see how the suggested algorithm can be adapted to other
distributions, such as the gamma or log-normal distributions.

In the case where we have data from more than one system, the suggested
approach (Section 5) was based on the approximation of the superposition of
several TRP’s by an NHPP. This is of course exactly true only if the original
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processes are NHPP’s. It would be interesting to use better approximations,
which may correct for some of the facts that we only observe the systems
for a finite time range, that the processes are not necessarily in equilibrium,
that we have only a finite, and sometimes even a small, number of systems or
that the systems are observed over different time intervals. There exist results
in the literature regarding superposition of renewal processes which might be
modified, see e.g. Arjas et al. [2].

The nonparametric estimators that we have suggested are based on the as-
sumption that the trend function λ(·) is monotone. While this is reasonable
(or at least not unreasonable) in many situations, a slightly more general es-
timator could perhaps be more useful. In Example 2, we did suspect that λ(t)
could be decreasing, not increasing for larger t. A natural extension could be to
allow λ(t) to be nondecreasing in one interval, and nonincreasing in another.
We would have to face the problem of estimating at what point t λ(t) changes
from nondecreasing to nonincreasing, as well as how to “tie” the two intervals
together. More generally, it is of course possible to consider nonparametric
estimation of λ(·) without monotonicity restrictions. The classical approach
here is to use kernel methods in a similar manner to what is done in density
estimation.

There are also repairable system models in the literature for which the times
between events are independent but not identically distributed. One such
model is the geometric renewal process where the inter-failure times have cu-
mulative distribution functions given by F (ci−1t), i = 1, 2, . . ., for some con-
stant c > 0. Thus the ageing of the system, which for the TRP is taken care of
by the trend function λ(·), is here represented by the constant c. A drawback of
such models turns out to be the assumed independence of inter-failure times.
As argued for example in Berman [5] and Thompson [14], successive intervals
between failures of a repairable system will usually be stochastically depen-
dent under ageing. Note that even the NHPP has the property of dependent
inter-failure times unless the intensity is constant.
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Fig. 1. Parametric and nonparametric estimates of λ(t) (left panel) and Λ(t) (right
panel), a simulated TRP
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Fig. 2. Failure number against time in thousands of hours of operation, U.S.S.
Halfbeak data
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panel), USS Halfbeak data
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Fig. 4. Original and bootstrap estimates of Λ(t), a simulated TRP
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Table 1
The parametric maximum likelihood estimates (and estimated standard deviations),
a simulated TRP

α̂ β̂ b̂

0.00448 1.550 3.024

(0.00107) (0.035) (0.162)
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Table 2
The parametric maximum likelihood estimates (and estimated standard deviations),
U.S.S. Halfbeak data

α̂ β̂ b̂

0.00936 2.808 0.762

(0.01225) (0.402) (0.071)
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