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Abstract 
 

This paper presents a model for deterioration and repair of a railway line. 
The critical failure is “broken line”. Two main failure mechanisms are considered: 
either shock failure, i.e. an immediate critical failure (without “warning”), or the 
critical failure occurs as the result of a degradation process, i.e. a degraded failure 
(crack) occurs first. Various types of inspection and maintenance are performed on 
the line. Inspection by Ultrasonic Inspection Cars (UIC) is carried out at regular 
intervals, and there is a probability q that the inspection shall detect a degraded 
failure. Additional inspection will be initiated on a segment of the line if degradation 
above a certain level is observed. A piece of rail which is degraded is more prone to 
suffer a critical failure (broken line), and when the degradation has reached a certain 
level, this will require immediate repair. The degradation/repair process within the 
fixed inspection interval is modeled as a time continuous Markov chain. Also the 
change of state implemented at the end of an inspection interval is modeled as a (time 
discrete) Markov chain. The model is based on actual inspection and failure data for a 
specific railway line in Norway. These data are used to estimate the parameters of the 
model. The given failure/maintenance model and estimation technique should 
generally be useful for systems that experience deterioration and are subject to 
imperfect inspection. 
 

Key Words – Maintenance modeling, Markov chains, Phase type distributions, 
Inspection 
 
1. Introduction 
 

This paper is concerned with the modeling and statistical analysis of the 
failure mechanism of a railway line. The background is a study of failure and 
inspection data from Dovrebanen, which is a part of the Norwegian railway line from 
Trondheim to Oslo. A failure model for railway lines is presented, using a Markov  
model, and the transition rates are estimated from these data.  
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The critical failures (broken rail) can either be seen as shocks (i.e. with no 
“warning”), or as a gradual degradation, where the line goes through various degraded 
states (with cracks) until it gets a critical failure. When a degraded failure occurs, the 
railway line is still functioning, and the crack can only be revealed by inspections of 
the line. Those inspections are performed at regular intervals by Ultrasonic Inspection 
Cars (UIC). However, at each inspection there is only a probability q of detecting a 
degraded failure; where q is roughly estimated to be between 0.4 and 0.7.  A piece of 
rail which is degraded is more prone to suffer a critical failure than a piece of rail not 
degraded (i.e. in the OK state). When a critical failure occurs, the failure has to be 
repaired in order to maintain regular traffic.  

 
The model will demonstrate for instance how various reliability parameters 

depend on the inspection interval, and will thus support identification of the most cost 
effective preventive maintenance strategy for the railway line in question. Other lines 
may have different conditions, and line specific data with a new estimation of 
parameters will then be required. However, the presented failure/maintenance model 
and estimation technique is believed to be useful also for other applications involving 
imperfect inspections and a gradual development of failure. 

 
A preliminary model and results were reported in [1], and this was based on 

work by Dolven [2]. Both this and the current paper depend heavily on [3] and [4]. 
The same railway application was also studien in [5], mainly using a simulation 
approach. Further, the approach is based on standard Markov Chain theory, e.g. see 
[6],  and the use of phase type distributions, see e.g. [7]. 

 
2.  The failure and Maintenance Model 
 

The overall model is based on two Markov models, one time continuous 
model describing the development between two inspections, and one Markov chain 
describing the transitions that may occur at an inspection, [3]. We start by describing 
the failure model. 

 
2.1  Failure Model 

A phase type distribution (see e.g. ) is used for time to failure. The failure 
model includes two different states for degraded failures and two different states for 
critical failures. In addition we have the OK state (see Figure 1).  

 

 
 

Figure 1:  The Markov failure model 
 

The critical failures can be divided into two categories; failures due to 
degradation, denoted F1 and “shock” failures, denoted F2. The latter failures happen 
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when the rail is exposed to large external forces like rolling stock. Those failures 
cannot be avoided by inspection. The critical failures due to degradation, however, 
can be avoided by performing preventive repair if they are discovered at inspections.  

 
The first degraded state, denoted D1, is for minor degraded failures (cracks). If 

a rail is detected in this state, the observations are made more frequent so that a 
critical failure due to degradation not should be possible. When the degraded state 
called D2 is detected (larger cracks) the failure is repaired immediately. 

The development of degraded and critical failures is modeled by a time 
continuous Markov chain, see Figure 1. If the railway line does not have a critical 
failure, there is a constant rate λ for getting a shock failure F2. In order to reach the 
critical failure state F1 the rail has to go through the degraded states D1 and D2. 

 
We partition the rail into small pieces of rail so that one piece is in only one of 

the states OK, D1, D2, F1 or F2, (and the above rates refer to these small pieces of 
length 1 m). 

 
2.2  Time Continuous Markov Chain 

In the following illustrations we will for simplicity ignore the state F2. The 
effect of this failure category can afterwards be incorporated by just adding an 
additional failure rate, λ (cf. Figure 1).  

 
However, in order to model also the maintenance for degradation failures we 

split the degradation states, according to whether these are detected or not. A 
subscript u on the degraded states indicates that a degraded failure is undetected (by 
UIC). Likewise, a subscript d indicates a degraded failure that is detected. Thus, 
 
D1u = Minor degraded failure (crack) being undetected. 
D1d = Minor degraded failure detected by UIC; then the observations are made more 

intensive (frequent) so that a critical failure due to degradation is not possible. 
D2u = Major degraded failure (crack) being undetected; (state believed to be OK). 
D2d =Undetected major degraded failure when the piece of line earlier has been 

detected to be in state D1; and is therefore it is closely monitored, but it is not 
known that the state D2 is reached. As soon as the state D2 is detected the failure 
is repaired immediately and the piece of rail goes to OK.  

 
If we start in one of the states OK, D1u or D2u at the beginning of an inspection 

interval, we get a time continuous Markov chain as illustrated in Figure 2. This will 
be valid for the complete inspection interval of length, T. However, if we during the 
inspection detect that the line is in the state D1, then the next inspection interval will 
start in state D1d, and then the more general diagram of Figure 3 applies. Here ρ refers 
to the transition rate caused by additional inspection in a detected state D1 as 
explained above. The direct rate to OK follows by the assumption of immediate 
repair. For simplicity we introduce an absorbing state OK*, and transfer to OK is 
carried out at the start of the next inspection interval. So both the states F1 and OK* 
are made absorbing states in the time continuous chain, meaning that a fresh start in 
OK always takes place at the beginning of an interval. This means that the same piece 
of rail can never have two failures or visits to D2u within the same interval, and we do 
not start in OK in the middle of an interval. This is a computationally simplifying 
assumption that will not to a great extent affect our results.  
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Figure 2: Time continuous Markov chain: start in OK (or D1u, D2u) at the 
beginning of an inspection interval 

 
 
 

OK D1u D2u

D1d

µ ω F1ν

D2dσ

OK* ρ  

ν

 
 

Figure 3: Time continuous Markov chain 
 

Further, note that the modeling allows transitions from D1 to D2 to have 
different rates, depending on whether the degradation to D1 is detected or not. The 
rate of failures (to F1) is however assumed to be the same for both D2u and D2d.  

 
Using transition rates as in Figure 3, we can now easily write down the 

intensity matrix, Q, of this time continuous Markov chain. Now numbering the states 
as 

 
OK = 1       D1u = 2       D1d = 3 D2u = 4      D2d =5       F1 = 6       OK* = 7 

 
this 7x7 matrix is of the form 

 

⎥
⎦

⎤
⎢
⎣

⎡
=

00
KA

Q  

 
where A is a 5x5 matrix, and the “0”-s here are matrices consisting of zeros only. 
 

Then using a suitable method for solving Markov chains, for example the 
computer package Maple, we can easily find the transition probabilities of the 
process. Let Xn(t), n=1, 2, ….., be the state of the time continuous Markov chain at 
time t in n’th inspection interval, and let  

 
pjk(t) = P(Xn(t) = k | Xn(0)= j)  

 
(assumed independent of n). We denote this matrix of transition probabilities by P(t) 
and get 
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where I is the identity matrix of appropriate dimension. 
 
 
2.3  Markov Chain for Transitions at Inspections 

The states Xn(0) and Xn(T) are of particular interest, where T is the length of 
the interval. Now consider the transitions of state that may occur as the result of the 
inspection (occurring at times T, 2T, ….). In order to be able to fit the model to the 
failure/inspection data, we now introduce the variables Un and Vn. Un tells the true 
state for a small piece of rail immediately before inspection, and Vn tells the true state 
immediately after inspection, i.e. at the start of the next inspection interval. Thus 
actually 

 
Un = Xn(T),      n = 1, 2, ……. 
Vn = Xn+1(0),    n = 1, 2, ……. 

 
Further, we introduce probabilities that degraded failures are detected by 

inspection: 
 
q1  =  Probability that state D1 of a line segment is detected. 
q2 = Probability that a degraded failure, D2 is detected by the inspection; not 

knowing in advance that the state D1 was reached.  
q3 =  Probability that a degraded failure, D2 is detected by the inspection; knowing 

in advance that the state D1 was reached.  
 

We can then introduce the matrix, R, for the transitions at the inspections, i.e. 
transitions from Un to Vn. 

 
                               OK    D1u      D1d       D2u          D2d         F1  OK* 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−
−

−

=

0000001
0000001
001000
000100
0000100
000010
0000001

33

22

11

qq
qq

qq

R

 

 
The transition matrix for Un equals R · P(T), and similarly the transition matrix for Vn 
equals P(T) · R; (also see [3]).  

 
Now introducing the asymptotic distributions of Un and Vn , 

 
πk = P(Un =k);  k = 1, ….., 7 
ψk = P(Vn = k);   k = 1, ….., 7, 

 
and the corresponding row vectors (vectors being bold) 
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π = (π1, π2, ……., π7)  
ψ = (ψ1, ψ 2, ……, ψ7) 

 
we have the two relations 
 
 ψ  = π ·R 

π =  ψ ·P(T) 
 
Thus the vector π is found from 
 

π = π ·R ·P(T) 
 
 
2.4  Overall Model and Assumptions 

As indicated above the two Markov chains can be combined into one total 
model, see Figure 4. Here we give the state numbers 1, …., 7 in addition to the 
notation OK etc., and again for simplicity we ignore the state F2. The solid lines 
represent the possible transitions within an inspection interval T, (cf. matrix P(T)). 
Recall that we make the simplifying assumption that one small piece of rail can only 
have one visit to OK* and F1 (and F2) within one inspection interval. Therefore we 
actually treat these as absorbing states in the time continuous Markov chain, and the 
process always start in state OK at the beginning of the next interval.  

 
The dotted lines of Figure 4 indicate transitions at the end of the test interval 

(cf. matrix R). With probability q1 we leave D1u and with probability q2 we leave D2u 
(thus observing state D2 but then going directly to OK which is the starting state at the 
beginning of next interval). Further, with probability q3 we leave D2d (thus actually 
observing D2), and there will also be transitions from the “absorbing states” OK* and 
F1 to OK. 

OK D1u D2u

D1d

µ ω F1ν

D2dσ

q2

q1

Transitions at end 
of inspection 

interval

Transitions of 
time continuous 

process

OK*

q3

 ρ  

ν

1 2 4 6

3 5

7

1

1

 
Figure 4: Overall failure/maintenance model, (state F2 not included) 
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So one of the interesting aspects of the model is that we have a time- 
continuous Markov chain in the time spans between inspections, while at the 
inspections we have transitions following a time discrete Markov chain.  

 
The model and the estimation of the parameters require some assumptions, 

e.g.: 
• We use the asymptotic distributions of the processes Un and Vn, thus these are 

assumed to be stationary processes; (the actual railway line is quite old so this is 
a rather realistic assumption). 

• The probability distributions of the time continuous processes are identical for 
all inspection intervals (i.e. stationarity is assumed also in this respect). 

• Implicitly we assume failures are equally distributed over the railway line 
(homogeneity). However, the estimated rates can be seen as averages for the line 
in question. 

• We can treat the critically failed states as absorbing states that are also repaired 
at the inspections. This implies that one small piece of rail can not fail critically 
twice inside one inspection interval. 

• Mean Time To Repair (MTTR) = 0. 
 

In order to carry out the estimation of the unknown rates it is also required to 
estimate some parameters by expert judgments (operational experience); these are: 

 
• The probabilities q1, q2 and q3 
• The rate (ρ) of reaching state D2 under additional inspections when state D1 is 

detected.  
 
3.  Estimation of Parameters 

 
We here present the failure/inspection data for the Dovrebanen and estimate 

basic reliability parameters. 
 

3.1  Input Data 
The input parameters for the estimation of model parameters are listed in 

Table 1. Degraded failures have been recorded since 1st January 1991 and have been 
exposed to 8 tests by October 2002. Critical failures have been recorded since 1st 
January 1989, and assuming the same length of the test interval (T=4299/8=537 days) 
also for these, this implies that these have been exposed to 9.4 tests. 

 
In total 800 degraded failures were observed. For 22 of these the severity was 

not recorded (i.e. not categorized as D1 or D2), and these 22 failures were just 
distributed proportionally amongst the two categories, giving in total 331 failures of 
type D1 and 469 of type D2.  

 
Further, 20 of the D2 failures have already been observed in state D1 (i.e. 

coming from state D1d and are actually monitored closely). It is then assumed that the 
test detects the transition to D2, and so these failures are corrected, and there is a 
transition back to state OK. The 449 detected failures of type D2u represent transitions 
from D1u, i.e. the degradations are observed for the first time. These are a fraction q2 
of the actual number of rail pieces in state D2u, and will by the test be brought back to 
the state OK. The other will remain in state D2u.  
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Finally, the number of critical failures of type F1 and F2 are given as 249 and 
81, respectively. 
 

Table 1: Inputs to parameter estimation 
 

Parameter definition Parameter Value 
Length of rail L 365 km = 365 000 m 
Number of tests/inspections 1989-2002 nTF 9.4 
Number of tests/inspections 1991-2002 nTD 8 
Number of days, 1989-2002 N1 5027 
Number of days, 1991-2002 N2 4299 
Length of test/inspection interval T 537 days 
Number of observations in state D1, (i.e. 
transitions from D1u to D1d ) 

ND1 331 

Number of observations in D2 when it was 
not known that state was degraded,  
(i.e. transitions from D2u) 

 
ND2a

 
449 

Number of observations in D2 when it  
was known that state was degraded,  
(i.e. transitions from D1d) 

 
ND2b

 
20 
 

Number of observations in F1 NF1 249 
Number of observations in F2 NF2 81 
Probability of detecting D1 failure at test q1 0.4 (expert judgement)
Probability of detecting D2 failure at test 
(state D1 not detected previously) q2 0.7 (expert judgement)

Probability of detecting D2 failure at test 
(state D1 already detected) q3 0.9 (expert judgement)

Rate of detecting D2 in additional inspections; 
(assuming on the average two additional 
inspections within each interval T) 

 
ρ 

 
(2/T)q3 (exp. judgem.) 

 
 

3.2 Asymptotic Distributions and Transition Rates 
It is now quite easy to estimate the distribution of Un under stationarity. For 

instance, the estimate of π6 is given by the number of observations in F1. The 
equations for π4 and π2 are obtained similarly. Finally, the estimated π5 and π7 are 
found from the number of detections of state D2 given that degradation D1 is already 
known. One third of these observations are assumed to be carried out at the ordinary 
inspections (see bottom of Table 1), and two thirds at the additional inspections, thus 
resulting in transitions to state OK*. Finally we have the normalization equation, in 
total giving (for 1m of rail): 

4
12 1013.1ˆ 1 −

⋅
⋅==⋅

TD

D

nL
Nqπ  

4
24 1054.1ˆ 2 −

⋅
⋅==⋅

TD

aD

nL
Nqπ  

6
3
1

35 1028.2ˆ 2 −
⋅

⋅=⋅=⋅
TD

bD

nL
Nqπ  

5
6 1030.7ˆ 1 −

⋅
⋅==

TF

F

nL
Nπ  
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6
3
2

7 1057.4ˆ 2 −
⋅

⋅=⋅=
TD

bD

nL
Nπ  

1ˆ.......ˆˆ 621 =+++ πππ  
 
Further, the estimate of π3 can be obtained from the following relation: 
 
 π3 = (π2 · q1 + π3) · (1- e-σT) 
 
The argument is that if Un = 3, then either Un-1 = 3 or Un-1 = 2, and D1 being detected,  
giving a transition from state 2 to 3, and in addition no transition has occurred in the 
last inspection interval. Rearranging this we get 
 

π3 = π2 · (eσT - 1) · q1
 

Now, a joint estimation of the stationary distribution, π, and the unknown rates 
(µ, ω, σ, ν), are obtained by the following recursive approach:  
 
• Starting with a value of σ, denoted σi (initially i=1), we get an distribution π(i).  
• We use this distribution and the relation π = π ·R ·P(T) to determine estimates of 

the transitions rates (µ, ω, σ, ν); (in particular giving a new σ denoted σi+1)  
• Calculate a new π(i+1) = π(i)·ReTQ, and use this to estimate µ, ω, σ, ν again 
 

It was seen that this converges very rapidly (about 3-4 iterations), and using q1 
= 0.4, q2 = 0.7 and q3 = 0.9, ρ = (2/T)·q3 we get the following estimates for the 
stationary probabilities πj (for 1 m rail): 
 

1π̂  = 0.99935 

2π̂  = 2.83 · 10-4

3π̂  = 7.25 · 10-5

4π̂  = 2.20 · 10-4

5π̂  = 2.54 · 10-6

6π̂  = 7.30 · 10-5 

7π̂  = 4.57 · 10-6 

 
Further we get the following estimated rates (per day): 
 

µ̂  = 5.9 · 10-7 /m 
ω̂  = 1.6 · 10-3

σ̂  = 9.2 · 10-4   
ν̂  =  9.3 · 10-4

ρ̂  =  3.4 · 10-3

λ̂  = 4.4 · 10-8 /m 
 

Observe that the estimate for ρ was obtained directly from expert judgment (Table 1), 
and λ was estimated directly from the number of F2 failures, (NF2) the total number of 
days N1, and the rail length, i.e. λ̂ = NF2/(N1·L). 
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Further, observe that now the distribution of Vn is also found using the R-
matrix. There are five possible states at the start of a test interval, and the estimates 
are found from the following relations 

 
Ψ1 = P(Vn = 1) = π1 + π4 · q2 + π5 · q3 + π6  + π7    
Ψ2 = P(Vn = 2) = π2 · (1 - q1)    
Ψ3 = P(Vn = 3) = π2 · q1 + π3      
Ψ4 = P(Vn = 4) = π4 · (1 - q2)    
Ψ5 = P(Vn = 5) = π5 · (1 - q3)    

 
giving 
 

=)ˆ......,,ˆ,ˆ( 521 ψψψ (0.99958, 1.7·10-4, 1.9·10-4, 6.6·10-5, 2.5·10-7). 
 
3.3  Additional Results 

Now having estimated the transition rates, some basic results concerning 
sojourn times directly follow. We use the notation E[T, i] for the mean sojourn times 
in state i. Given no maintenance, we have a pure continuous process and these mean 
times are given as the inverse of corresponding rates, see Table 2. This table also 
gives MTTFi Mean Time To Failure for failure mode i (i.e. F1 and F2). Also the 
overall MTTF is given. Note that these results corresponds to so-called naked failure 
rates (no repair is performed), see e.g. [8, 9, 10]. The rate 1/MTTF = (1/MTTF1 + 
1/MTTF2) could also be referred to as the (asymptotic) Rate of Occurrence of Failure, 
ROCOF, (see [11]) when there is no maintenance. 

 
Table 2: The estimated sojourn times and MTTF, assuming no maintenance 

(T=∞). For a piece of rail of length 1 km. 
 

Parameter Estimate 
E[T, OK]        (1/µ) 4.6 years 
E[T, D1u]        (1/ω) 1.7 years 
E[T, D2u]        (1/ν) 2.9 years 
MTTF1       (1/µ+1/ω+1/ν) 9.2 years 
MTTF2           (1/λ) 62 years 
MTTF     (1/MTTF1 + 1/MTTF2)-1 8.0 years 

 
4.  Maintenance Optimization 
 

Now having established the estimates of the rates λ, µ, ω, σ and ν it is of 
interest to consider the effect of various levels of maintenance on basic reliability 
parameters like: 

• Frequency (rate) of entries into failure states 
• MTTF 

 
There are two parameters that we can control: 

• Length of inspection interval, T 
• Frequency of additional inspections, (cf. ρ), when degradation in state D1 is 

detected 
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As the number of entries to the critically failed state F2 does not change with 
the maintenance level, we keep focusing on the failures due to degradation. In 
particular the asymptotic rate of entering F1 (i.e. ROCOF1), and its inverse (MTTF1) 
for various values of T is most interesting.  
 

To find such entry rates we need the over-all average probability of the time 
continuous process being in various states. The probability for the process X(t) to be 
in state k at time t equals; (remember that ψ5 = ψ6 = 0): 
 

)()( 5
1 tptp jkj jk ∑ == ψ  

 
Here pjk(t) are the elements of the transition matrix P(t). Now the “average 
probability” to be in state k equals  
 

*5
1

*
jkj jk pp ∑ == ψ  

 
where  

∫=
T

jkTjk dttpp
0

1* )(  

 
First, the “overall” (average) probability of the time continuous process to be 

in state OK is found as (see Figure 3)  
 

 P(OK) = ∫⋅⋅
T

T dttp
0 11

1
1 )(ψ  

 
Since obviously p11(t) = e-µt. 
 
 P(OK) = ψ1 · [1- e-µT] / (µ ·T) ≈  [1- e-µT] / (µ ·T) 
 
The rate of entries into degradation state D1 (actually D1u) is found as 
 
 ROCOD1u  = P(OK) · µ ≈  [1- e-µT] /T 
 
Similarly, the probability to be in state D1u equals 
 
 P(D1u) = ψ1 · p12* +  ψ2 · p22*  
 
Here  

p12(t) = [µ·/(µ-ω)] · [e-ωt - e-µt]  
 
p22(t) = e-ωt

 
Thus, it will follow 
 
 P(D1u) = ψ1 ·[µ·/(µ-ω)] · [(1-e-ωT)/ω – (1-e-µT)/µ] /T + ψ2 ·[1- e-ωT]/T 
  
The rate into D2u equals 
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 ROCOD2u  = P(D1u)·ω    
 

The most interesting part is obviously the rate of entries into the critical failure 
state F1. We then need the probabilities to be in states D2u or D2d. Now 
 

P(D2u) = ψ1 · p14* +  ψ2 · p24*  +  ψ4 · p44*   
  
P(D2d) = ψ3 · p35* +  ψ5 · p55*   

 
which can be computed in the same way as above. Now the asymptotic rate into F1
 
 ROCOF1 = [P(D2u) + P(D2d)] · ν 
 
so for the maintained system, the asymptotic MTTF1 = 1/ ROCOF1 is given by the 
above formulas. 
 

We computed ROCOD1u, ROCOD2u, ROCOF1 and MTTF1 for a few values of 
T, and also for some alternative values of ρ. Table 3 gives the results for T=365 days 
and 730 days together with the actual value of the observations (T=537 days). The 
mean number of observations in state F1 for a duration corresponding to the actual 
data (5027 days) are also given. 
 

Table 3: Reliability parameters for various values of T 
 

Inspection interval, T  Parameter 
365 days 537 days 730 days 

ROCOD1u (per day and km) 5.88 · 10-4 5.88 · 10-4 5.88  · 10-4

ROCOD2u (per day and km) 2.98 · 10-4  3.50 · 10-4 3.88  · 10-4

ROCOF1 (per day and km) 0.98 · 10-4  1.42 · 10-4 1.85  · 10-4

MTTF1 for 1 km rail (years) 28.0 19.3 14.8 
Expected no. of failures  
(in 5027 days) 180 261 339 

 
 

In Table 4 we use T = 537 days, but vary the rate ρ. The nominal is the value 
used in the analyses above and ρ is given as percentage of this. 
 

Table 4: Reliability parameters for various values of ρ  
 

ρ (rate of increased 
inspection by  

detecting state D1) 

ROCOF1
(per day  
and km) 

MTTF1 for 1 
km rail  
(years) 

Exp. no. of 
failures 

(in 5027 days) 
25% 1.50  · 10-4 18.3 276 
50% 1.47  · 10-4 18.6 270 
100% 1.42   · 10-4 19.3 261 
200% 1.36  · 10-4 20.1 250 
400% 1.31  · 10-4 20.9 240 
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5.  Conclusions 
 

The paper reports a realistic real life case study. The situation is rather 
complex, leading to a model where we combine a model for failure development and 
a model for maintenance. The former describes a degradation mechanism through 
various states (phase type failure distribution), while the latter describes a 
maintenance strategy being a kind of mixture of preventive maintenance and 
condition monitoring. 
 

Our approach uses a combination of a time continuous and a time discrete 
Markov chain. The model is made as simple as possible in order to achieve 
transparency and simple interpretation of the results. This has been achieved, for 
example, by reducing the number of degradation states. 
 

The approach is utilizing a combination of “hard” and “soft” input, which is 
often the case in a practical situation. The soft input consists of expert judgment based 
on operational experience to assess probabilities to detect degradation states by 
inspection, and frequency of additional inspections after this is detected using “best 
estimates”. The hard input is given by the actual observations of degradations for a 
rather long period of operation. 
 
 The estimated model shows for instance that the MTTF for critical degradation 
failures of 1 km length of rail decreases from 28.0 years when inspection interval is 1 
year to 14.8 years when the inspection interval is 2 years. Similarly, mean number of 
failures is doubled when T increases from 1 year to 2 years. The frequency of 
increased inspections when a degraded failure is detected has less effect on the results.  
 

The computed estimates are valid for the given line only: for another line with 
a different state of the line and the environment one would obviously get different 
estimates for the transition rates. The approach is, however, generally applicable. The 
paper is demonstrating the usefulness of analytic models to optimize maintenance. 
Even simple, basic models like Markov chains may lead to significant achievement 
with respect to optimal use of resources. 
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