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Consider a multistate system with partially ordered state space E, which is divided into
a set C of working states and a set D of failure states. Let X(t) be the state of the
system at time t and suppose {X(t)} is a stochastically monotone Markov chain on E.
Let T be the failure time, i.e. the hitting time of the set D. We derive upper and lower
bounds for the reliability of the system, defined as Pm(T > t) where m is the state of
perfect system performance.
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1. Introduction

Consider a system consisting of n components, where the set of possible states for

the kth component is a finite set which we denote by Ek (k = 1, 2, . . . , n). The set of

possible states of the system is E = E1×· · ·×En. Let the system be monitored from

time t = 0 and define Xk(t) to be the state of component k at time t, defined for

t ≥ 0. The state of the system at time t is then given by X(t) = (X1(t), . . . , Xn(t)).

For systems of independent components we may construct Markov models for

{X(t)} by modelling separately each component process {Xk(t)} as a Markov chain.

In the case of dependent components, however, Markovian component processes

will not in general imply a Markovian system process. Thus, in order to obtain

tractable Markov models in the presence of dependence it is convenient to start

by the assumption that the system state {X(t)} forms a Markov chain on E and

then define the possible transitions and transition rates between the states. In the

present article we shall study such Markov chains {X(t)} on E.

Suppose C ⊂ E is the set of states in which the system is working, while D ≡
E \ C is the set of failure states. The failure time T is the time when the set D

is first hit, more precisely T = inf{t ≥ 0 : X(t) ∈ D}. We define the reliability of

the system to be the probability Pm(T > t), with the index m meaning that the

Markov chain {X(t)} starts at time 0 in state m, which we define to be the perfect
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2 Bounds for the reliability of multistate systems

functioning state of the system. The purpose of the article is to derive upper and

lower bounds for the reliability function Pm(T > t).

Bounds for Pm(T > t) in the present context have earlier been derived under

the assumption that {X(t)} is so called associated in time, see Esary and Proschan1

for the case of binary components (each Ek is the set {0, 1}) and Funnemark and

Natvig2 for the case of finite totally ordered state spaces Ek. Practice has shown,

however, that bounds based on association may often be too wide to be useful. In

this paper we use a slightly different approach based on properties of the so-called

quasi-stationary distribution of the Markov chain X(t) (see Darroch and Seneta3).

Moreover, we assume that the Markov chain {X(t)} is stochastically monotone with

respect to a partial order on the state space E. In fact such an assumption is closely

related to association (see Lindqvist4), making our approach closely related to the

ones cited above.

To increase generality, we assume that the partial order on E in turn is induced

by partial orders �k on each set Ek. The convention is here that larger states with

respect to the ordering correspond to better performance of the component. Most

literature on multistate systems assume that the state spaces of the components

are totally ordered. In practice, however, a totally ordered state space may not be

the most natural. For example, the possible states could be “functioning”, “failure

of type A”, “failure of type B”, etc. In this case the failure states can not neces-

sarily be ordered in a definite way. Hence we rather have a partial ordering, with

“functioning” being better than each of the failure states, while no other pairs of

states are comparable. More specifically, Caldarola5 argued that it would be very

hard to decide whether or not the state “failed closed” of a circuit breaker is more

critical than the state “failed open”. In addition, for a given component the order-

ing of the states may depend upon the system to which the component belongs. A

more artificial reason for introducing partially ordered state spaces of components

would be the following. Consider a binary system of binary components, where the

component set can be partitioned into subsets containing stochastically dependent

components, but where the collection of subsets are mutually independent. Then

in order to achieve stochastically independent components, one may define “super-

components” corresponding to each of the independent sets. A supercomponent

involving m binary components would then for example have 2m partially ordered

states. This idea was considered by Caldarola5.

The precise definition of a stochastically monotone Markov chain on a partially

ordered state space is given in the next section. Intuitively, stochastic monotonicity

means an ageing property of the system in the sense that the remaining time to

failure decreases stochastically as the system state is getting worse (with respect

to the partial order). Although this is a reasonable assumption in many reliability

applications, one may of course think of important cases where it does not hold.

It is noticeable, however, that any birth and death process is stochastically mono-

tone. Moreover, stochastic monotonicity of component processes imply stochastic

monotonicity of the system process in the case of independent components. This
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also holds for certain cases of dependent components, under reasonable assumptions

on the joint behavior of component processes4. Stochastically monotone Markov

chains on totally ordered state spaces were considered by Keilson6, while Lindqvist4

has studied the finite partially ordered case.

As mentioned above, a key ingredient in our approach is the quasi-stationary

distribution of the Markov chain {X(t)}. This is a distribution ρ = (ρi : i ∈ E)

with support on C which is defined as the limiting distribution of the state at time

t → ∞, conditioned on the event that the process has not yet (at time t) exited

from C (see precise definition in Section 2). The basic property of a quasi-stationary

distribution ρ that we will use is that

Pρ(T > t) = e−t/Eρ(T ),

which states that the failure time T is exactly exponentially distributed when the

initial distribution of the chain is ρ. Quasi-stationary distributions were first con-

sidered by Darroch and Seneta3. A nice introduction is given by Keilson6.

The plan of the article is as follows. In Section 2 we give precise definitions and

some basic results concerning partial orders, stochastic monotonicity and quasi-

stationary distributions. In Sections 3 and 4 we derive upper and lower bounds

for the reliability function. A numerical comparison of the results from the present

article and results of Esary and Proschan1 is given in Section 5. Some concluding

remarks are given in Section 6.

2. Precise Definitions and Basic Results

2.1. Partial order

Recall first that a relation � on a set X is a partial order if it is (i) reflexive, i.e.

x � x for all x, (ii) antisymmetric, i.e. x � y and y � x imply x = y and (iii)

transitive, i.e. x � y and y � z imply x � z.

For the systems considered in this article we assume that the component state

spaces are finite partially ordered sets (Ek ,�k). We define the partial order � on

their product space E to be the product order defined by

(i1, i2, . . . , in) � (j1, j2, . . . , jn) if and only if ik �k jk for k = 1, 2, . . . , n.

We shall assume throughout the article that each set Ek contains a unique maximal

element mk such that ik � mk for all ik ∈ Ek. The system state m ≡ (m1, . . . , mn)

is then a unique maximal element of E. The mk correspond to perfect functioning

of component k while m corresponds to perfect functioning of the system.

Example 1. A simple nontrivial example of a partially ordered state space can be

given as follows. Let E = {0, 1, 2, 3}, where 0 � 1 � 3, 0 � 2 � 3, but assume

no relation between 1 and 2. Then 3 can be thought of as the perfect state, 0 as

the complete failure state while 1 and 2 are intermediate states corresponding to
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non-perfect conditions which are not necessarily ordered in severity. In fact, the set

E may be viewed as the state space of a supercomponent (see Section 1) resulting

from two binary components. In this case state 3 corresponds to both components

working, state 2 corresponds to component 1 working, component 2 failed etc.

A set A ⊆ E is called increasing (decreasing) if i ∈ A, j � i (j � i) imply j ∈ A.

Note that the set A is decreasing if and only if its complement Ac is increasing.

Throughout the present article we shall assume that the set C of working states is

an increasing set. This is a reasonable assumption since it means that if the system

is working when in a certain state, then any better state (with respect to the partial

order) is also a working state. The set D = E \ C is then necessarily a decreasing

set.

2.2. Stochastically monotone Markov chain

Let α = (αi : i ∈ E) and β = (βi : i ∈ E) be probability distributions on E. We

shall say that α is dominated by β, written α � β, if α(A) ≤ β(A) for all increasing

subsets A ⊆ E.

Let {X(t)} be a time-homogeneous Markov chain on E with intensity matrix

Q = (qij). If α is a distribution on E, then Pα(·) denotes probabilities computed

when the distribution of X(0) is α. In order to stress the dependence on Q, we shall

sometimes write Pα,Q(·) for Pα(·). For short, we write Pi(·) when α is the measure

concentrated in state i. The Markov chain {X(t)} is stochastically monotone if for

any increasing set A ⊆ E and any t > 0, Pi(X(t) ∈ A) is a non-increasing function

of i on E (with respect to the partial order �). The following equivalent definition

in terms of the intensity matrix Q is given in Lindqvist4:

The intensity matrix Q is stochastically monotone if for all i � j in E we have

Qi(A) ≤ Qj(A) for all increasing A ⊆ E with i, j 6∈ A (1)

Qi(A) ≥ Qj(A) for all decreasing A ⊆ E with i, j 6∈ A (2)

Here Qi(A) =
∑

j∈A qij .

By a trivial generalization of the proof of Theorem 9.3F in Keilson6 (to allow

partial order) it follows that if {X(t)} is stochastically monotone, and E contains

a unique maximal element m, then Pm(X(t) ∈ A) is a non-increasing function of t

for any increasing set A. In the setting of the present article this means that when

the system state is defined by a stochastically monotone Markov chain, starting in

its “best” state, then the system deteriorates (stochastically) with time.

To describe additional properties of stochastically monotone Markov chains we

introduce the space of sample paths of the chain {X(t)}. Let u > 0 be a fixed time

point, and consider the process {X(t)} on the closed time interval [0, u]. It is well

known that the sample paths of {X(t)} for t ∈ [0, u] can be chosen as members

of the space Eu of functions from [0, u] to E which are right continuous and have

left limits at all t ∈ [0, u]. Moreover, Eu becomes a Polish space when furnished

with the Skorohod metric (see e.g. Kamae et al.7). Now the Pα(·) can be viewed as
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measures on the measurable space (Eu,B), where B is the Borel σ-field in Eu. We

shall in the following tacitly assume that any considered subset of Eu is a member

of B. A natural partial order on Eu is the pointwise order, i.e. for x(·), y(·) ∈ Eu

we have x ≤ y iff x(t) � y(t) for all t ∈ [0, u]. This makes it possible to consider

increasing (decreasing) subsets of Eu.

Let now R and Q be two intensity matrices for the Markov chains {X(t)} and

{Y (t)}, respectively, both defined on E, but not necessarily stochastically monotone.

We shall say that R is dominated by Q, written R ≤ Q, if for all i � j in E we have

Ri(A) ≤ Qj(A) for all increasing A ⊆ E with i, j 6∈ A (3)

Ri(A) ≥ Qj(A) for all decreasing A ⊆ E with i, j 6∈ A (4)

If at least one of R and Q is stochastically monotone, then it is enough to consider

i = j in the above definition. If R ≤ Q, then it follows from Theorem 5 of Kamae

et al.7 that for initial distributions α � β and any increasing set C ⊆ Eu we have

Pα,R(C) ≤ Pβ,Q(C) (5)

Let α and β be probability distributions on E such that α � β, and let {X(t)}
be stochastically monotone with intensity matrix Q. Then by (5) applied to the

case R = Q it follows that for any increasing set C ⊆ Eu we have

Pα(C) ≤ Pβ(C) (6)

Now, let D be a decreasing subset of E and let T denote the hitting time of the

set D, as defined in Section 1. Then {T > t} defines an increasing set in Eu when

u > t. Hence by (6), for stochastically monotone {X(t)}, we have

Pα(T > t) ≤ Pβ(T > t) whenever α � µ (7)

The relation (7) is intuitively reasonable in our setting, as it may be interpreted

to say that with a better initial state, the probability of no failure before time t

increases.

Example 2. Suppose E is given as in Example 1 and let Q be the intensity matrix of

a Markov chain on E. The increasing subsets of E are {3}, {1, 3}, {2, 3}, {1, 2, 3},
while the decreasing ones are {0}, {0, 1}, {0, 2}, {0, 1, 2}. Thus by going through all

possible cases of (1) and (2) in the definition of stochastic monotonicity we conclude

that Q is stochastically monotone if and only if the following eight relations all hold:

(i) q10 + q12 ≥ q30 + q32

(ii) q20 + q21 ≥ q30 + q31

(iii) q12 + q13 ≥ q02 + q03

(iv) q21 + q23 ≥ q01 + q03

(v) q10 ≥ q30
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(vi) q20 ≥ q30

(vii) q13 ≥ q03

(viii) q23 ≥ q03

If transitions between non-related states are not allowed (i.e. Q is up-down, to be

defined below), then q12 = q21 = 0 and it is seen that the inequalities (v)-(viii) are

implied by (i)-(iv). If we further assume that direct transitions between the extreme

states 0 and 3 are not possible, then Q is stochastically monotone if and only if q10 ≥
q32, q20 ≥ q31, q13 ≥ q02, q23 ≥ q01. In the case of a supercomponent (see Example

1), these inequalities state that the failure rate of each (sub)component increases

and the repair rate decreases, when the other component goes from working to

failed.

2.3. Stationary and quasi-stationary distribution

Next we introduce the concept of an ML-matrix. A square finite matrix B = (bij)

is called an ML-matrix if bij ≥ 0 for all i 6= j. If B is an ML-matrix, then for

sufficiently large a, S = aI + B is a nonnegative matrix, where I is the identity

matrix. We call B irreducible if S is irreducible, i.e. if for any pair i, j there is a

positive integer n with s
(n)
ij > 0. If B is irreducible, then by Chapter 2 in Seneta8

there exists an eigenvalue τ (which we shall call the Perron-Frobenius eigenvalue of

B) such that τ > Re(ν) for any other eigenvalue ν of B (where Re(ν) is the real

part of the possibly complex number ν). Moreover, to τ correspond unique, up to

constant multiples, strictly positive left and right eigenvectors.

Any intensity matrix Q of a Markov chain {X(t)} is an ML-matrix. The property

that Q is irreducible as an ML-matrix then corresponds to the irreducibility of the

Markov chain {X(t)} in the ordinary terminology, i.e. that any state can be reached

from any other state. Moreover, for an intensity matrix Q we have τ = 0, while the

left and right eigenvectors of Q at 0 are, respectively, the stationary distribution π

(if it exists) and a column of all 1s.

The intensity matrix Q is called up-down if qij > 0 implies i � j or i � j for

all i, j ∈ E, i 6= j. This means that any change of state of the system is to a state

which is either better or worse with respect to the partial order.

In the article we will use the notation QC = (qij : i, j ∈ C). Thus QC is the

restriction of Q to C. We will also use the corresponding notation for vectors, e.g.

ρC = (ρi : i ∈ C).

It is well known that Q irreducible implies the existence of a unique stationary

distribution π = (πi : i ∈ E). Moreover, QC irreducible implies the theorem below.

Theorem 1 (Darroch and Seneta3) If QC is irreducible, then for any initial

distribution α with α(C) > 0, the limits

ρj = lim
t→∞

Pα(X(t) = j | T > t) ; j ∈ C (8)

exist, with the ρj being strictly positive and not depending on α. The vector ρC is

the unique normalized (to norm 1) left eigenvector of QC for the Perron-Frobenius
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eigenvalue τ ≡ −a (< 0). Moreover, define ρ to be the probability distribution on

all of E with probability mass ρj for j ∈ C and mass 0 for j ∈ D. Then

Pρ(T > t) = e−at for all t > 0 (9)

i.e. the distribution of T is exactly exponential when ρ is the initial distribution.

Following Darroch and Seneta3 we shall call the distribution ρ the quasi-stationary

distribution of {X(t)}. Note the dependence of ρ on the set C. As indicated by (8),

the quasi-stationary distribution can be interpreted as the conditional distribution

of the state of the system, X(t), at a large time t, conditioned on the event that

the system has not yet failed (i.e. X(t) has not yet left the set C). Moreover, (9)

can be interpreted to say that under this condition, the remaining time to failure is

exactly exponentially distributed, with expectation Eρ(T ) = 1/a.

3. Bounds for the Reliability Function

In the present section we show how to derive simple upper and lower bounds for

the reliability function Pm(T > t) in terms of the quasi-stationary distribution ρ

and the associated eigenvalue −a.

From (7) follows directly that if Q is stochastically monotone and if a quasi-

stationary distribution ρ exists (e.g. if QC is irreducible), then

0 ≤ Pm(T > t) − Pρ(T > t) ≤ (1 − ρm)Pm(T > t)

From this we obtain

e−at ≤ Pm(T > t) ≤ ρ−1
m e−at (10)

The upper bound in (10) appears, however, to be of little value when ρm is not close

to 1. There is thus a need for improvement of this bound. A possible approach is

as follows. First, write

Pρ(T > t) =
∑

i∈C

ρiPi(T > t) = ρmPm(T > t) +
∑

i6=m

ρiPi(T > t)

so that

Pm(T > t) = ρ−1
m



Pρ(T > t) −
∑

i6=m

ρiPi(T > t)





From this we get directly:

Theorem 2 Assume that Q is stochastically monotone and QC is irreducible.

Suppose lower bounds bi(t) of Pi(T > t) are available for all i ∈ J , where J is some

subset of C \ {m}. Then

e−at ≤ Pm(T > t) ≤ ρ−1
m

[

e−at −
∑

i∈J

ρibi(t)

]

(11)
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This inequality generalizes the upper bound of (10), as the latter corresponds to

J = ∅ (the empty set). It seems worthwhile to try to derive nontrivial bounds bi(t)

for at least the i corresponding to the largest ρi, i 6= m. The question remains to

derive functions bi(t) that are relatively simple to compute and otherwise do fairly

well. Our idea here is to define new Markov chains from the old one and then apply

the left inequality in Theorem 2 to the derived chains.

In the following, fix one element in J and call it m′. Define the set E′ by

E′ = {i ∈ E : i � m′}

Then E′ is a finite partially ordered set, with partial order inherited from E, and

with a unique maximal element m′. We shall consider a Markov chain {X ′(t)} on

E′ with intensity matrix Q′ = (q′ij : i, j ∈ E′), where q′ij = qij when i, j ∈ E′, i 6= j,

and diagonal elements q′ii defined so that the row sums equal 0. (Note that Q′ 6=
QE′). Define now D′ = D ∩ E′. Then D′ is a decreasing set with respect to the

partially ordered set (E ′,�). Let furthermore T ′ denote the hitting time of D′ for

the Markov chain {X ′(t)}. Then we have the following result.

Lemma 1 Suppose Q is stochastically monotone and up-down. Then

Pm′,Q(T > t) ≥ Pm′,Q′(T ′ > t)

Proof. We shall define another Markov chain {Y (t)} on E, given by the intensity

matrix R = (rij) with off-diagonal elements given by

rij =

{

0 if i ∈ E′, j ∈ E \ E′

qij otherwise

and rii defined so that the row sums of R equal 0.

As there are no positive transition rates from E ′ to E \E′, it is seen that for an

initial state in E′, the chain {Y (t)} behaves exactly as {X ′(t)}. Thus

Pm′,R(T > t) = Pm′,Q′(T ′ > t)

By (5) we are therefore done if we can show that R ≤ Q.

Since Q is stochastically monotone, we must prove that, for any i, Ri(A) ≤
(≥)Qi(A) for all increasing (decreasing) sets A ⊆ E with i 6∈ A.

Let therefore i ∈ E be given. First, let A be an increasing set with i 6∈ A. Then

Ri(A) ≤ Qi(A) by the definition of R.

Next, let A be a decreasing set with i 6∈ A. We split up into the following two

cases:

i ∈ E \ E′: Then we have Ri(A) = Qi(A) by the definition of R.

i ∈ E′: Then Ri(A) = Qi(A∩E′). We are done if we can prove that Qi(A∩E′) =

Qi(A). To do this, suppose for contradiction that qik > 0 for some k ∈ A\E ′. Then,

by the assumed up-down property of Q, either i � k or i � k. The former case is

impossible, as it would imply i ∈ A because k ∈ A and A is decreasing. The latter
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case is, however, also impossible, as it would imply k ∈ E ′ because i ∈ E′ and E′

is a decreasing set in E. Thus qik = 0 for all k ∈ A \ E′ and we are done.

The lemma suggests that lower bounds bm′(t) may be based on Pm′(T ′ > t),

either by direct computation of these probabilities, or by further bounding them

from below. An example is given in Section 5. If {X ′(t)} is stochastically monotone

(which is not guaranteed from the monotonicity of {X(t)}) and E ′∩C is irreducible

(with respect to {X ′(t)}), then we can use the lower bound of Theorem 2. If {X ′(t)}
is not monotone, then we may construct a monotone R′ with R′ ≤ Q′ and use (5)

to compute a bound.

The bounds bi(t) of the preceding paragraph have the property that bi(0) =

1, bi(∞) = 0. Using them in (11) thus yields an upper bound h(t) for Pm(T > t)

with h(0) = (1 − ∑

i∈J ρi)ρ
−1
m and h(∞) = 0. Thus we can have h(0) as close to 1

as we wish, by increasing J . With J = C \ {m} we get h(0) = 1.

4. Alternative Lower Bound for the Reliability Function

Recall from Theorem 2 that under the given conditions we have Pm(T > t) ≥ e−at,

where −a is the Perron-Frobenius eigenvalue of the restriction QC of Q to the set

C. In practice one may not want to compute the exact value of a, so one might be

interested in more easily available upper bounds c, say, for a. Of course, if a ≤ c,

then Pm(T > t) ≥ e−ct.

The result below is a consequence of a more general result of Lindqvist9 on the

Perron-Frobenius eigenvalue of ML-matrices. The possible advantage of the result

is that instead of doing computations related to the quasi-stationary distribution

one needs only compute an ordinary stationary distribution. We also note that the

inequality (12) does not require stochastic monotonicity of Q.

Let, as before, QC be the restriction of Q to C. Define now Q◦
C so that QC

and Q◦
C coincide outside the main diagonal, and let the diagonal elements of Q◦

C be

defined so that each row of Q◦
C sum up to 0. Then Q◦

C is the intensity matrix of a

Markov chain on C, and hence the Perron-Frobenius eigenvalue of Q◦
C is 0. Note,

furthermore, that

QC,ii − Q◦
C,ii = −Qi(D)

Let π◦ be the stationary distribution of the Markov chain on C with intensity matrix

Q◦
C . Then we have:

Theorem 3 (Lindqvist9) If QC is irreducible, then

a ≤
∑

i∈C

π◦
i Qi(D) ≡ c, (12)

and hence

Pm(T > t) ≥ e−ct (13)

Example 3. Suppose E = {0, 1, 2} with total order 0 � 1 � 2 and transition rates

given by q21 = q12 = q02 = 100, q10 = 1 and q20 = q01 = 0. The resulting Markov
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chain is stochastically monotone, and with C = {1, 2} we have QC irreducible. Now

Theorem 3 gives a ≤ 0.5, whereas the exact value of a is 0.4988.

Remark: Time-reversible chains.

Recall that the Markov chain {X(t)} by definition is time-reversible if there exist

positive constants (zi : i ∈ E) such that

ziqij = zjqji (14)

for all i, j ∈ E, i 6= j. The stationary distribution π = (πi : i ∈ E) of the Markov

chain {X(t)} on E is found by norming the zi to have sum 1. The relations (14)

obviously also carry over to the Markov chain with infinitesimal intensity matrix

Q◦
C encountered in Theorem 3. It therefore follows that in the time-reversible case

we have

π◦
i =

πi

π(C)
≡ π∗

i

where π∗ is the so-called ergodic exit distribution considered by Keilson6.

In Theorem 6.9C of Keilson6 is shown that in the case of time-reversibility (not

assuming stochastic monotonicity) we have

Pπ∗(T > t) ≤ Pρ(T > t) = e−at. (15)

The left hand side here can be interpreted as the probability that a presently working

system which has been running for a long time, will continue to work for at least

a time t. The right hand side, on the other hand, is the corresponding probability

for the case when the system is working and has not yet visited the failure states.

The next example shows that (15) does not necessarily hold for non-reversible

stochastically monotone chains.

Example 3 (continued). The Markov chain of the example is not time-reversible

since q20 = 0, while q02 > 0. Moreover, we compute π∗ = (0, 0.4975, 0.5025), so

π∗ � ρ and hence Pπ∗(T > t) > Pρ(T > t).

Remark: Bounding the quasi-stationary distribution.

The following lemma is a straightforward consequence of the fact that −a is an

eigenvalue of QC .

Lemma 2 If QC is irreducible, then

a =
∑

i∈C

ρiQi(D) (16)

Proof: The relation ρQC = τρ is equivalent to
∑

i∈C ρiqij = τρj for all j ∈ C.

Summing over j we get
∑

i∈C ρi

∑

j∈C qij = τ from which the lemma follows since
∑

j∈C qij = −Qi(D) by the fact that Q is an intensity matrix.
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By Lemma 2 and Theorem 3 we have
∑

i∈C

ρiQi(D) ≤
∑

i∈C

π◦
i Qi(D) (17)

Since Qi(D) is a decreasing function of i ∈ C it might be conjectured from (17)

that

π◦ � ρC (18)

Indeed, (18) holds in Example 3 since we there have π◦ = (0.5, 0.5). However, (18)

does not hold in general as will follow from the next example.

Example 4. Let (E,�) be as in Example 1. Let q01 = 1, q10 = 1, q02 = 1, q20 =

1410, q13 = 5, q31 = 2, q23 = 90, q32 = 1. Then Q is stochastically monotone. Let

C = {1, 2, 3}. A computation shows that

ρC = (0.2838, 0.0005, 0.7157)

π◦ = (0.2835, 0.0079, 0.7087)

so π◦ 6� ρC since π◦ gives the largest mass to the increasing set {2, 3}.

5. Comparison of Results: a Binary 2-out-of-three System

Consider a system with three binary components, so that E1 = E2 = E3 = {0, 1}.
The components are assumed to be independent of each other, each with a failure

rate λ (transition rate from state 1 to state 0) and repair rate µ (transition rate

from 0 to 1). We assume that the system is a 2-out-of-3 system, which means that

the system works if and only if at least two components are in state 1.

It is convenient to denote the system states by the ordered vector of the cor-

responding component states, 101 etc. Then the set of working states is C =

{111, 110, 101, 011}, with m = 111 corresponding to the perfect state. This ex-

ample was considered by Esary and Proschan1, who computed lower bounds for

Pm(T > t) by using properties of associated stochastic processes. The purpose of

the present example is to compare our bounds with theirs, and also to exemplify

the new results.

First we ascertain that the corresponding Markov chain is indeed stochastically

monotone. This follows by inspection of the intensity matrix Q, but is also a simple

consequence of the fact that the component processes are independent birth and

death processes. Next, with C given as above we have

QC =









−3λ λ λ λ
µ −(2λ + µ) 0 0
µ 0 −(2λ + µ) 0
µ 0 0 −(2λ + µ)









.

The quasi-stationary distribution on C is found as the unique probability vector ρC

on C satisfying ρCQC = τρC where τ is the largest eigenvalue of QC . The solution

is

ρC = (ρm, (1 − ρm)/3, (1− ρm)/3, (1 − ρm)/3),
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where ρm = (
√

δ2 + 10δ + 1−δ−1)/4 and δ = µ/λ. Moreover, a ≡ −τ = 2λ(1−ρm).

To compute c defined in Theorem 3 we first note that Q◦
C is obtained by changing

the three lower diagonal elements of QC to −µ. Then from (12) we get c = 6λ/(δ +

3).

Table 1 presents the bounds of Theorems 2 and 3, together with the exact values

and the bounds of Esary and Proschan1 (EP), computed for selected values of δ

and γ ≡ λt.

For computation of the upper bound of Theorem 2 we have used the somewhat

crude bounds Pi(T > t) ≥ bi(t) = e−2λt for i = 110, 101, 011. (These correspond to

ignoring the possibility of transition to 111 before leaving C).

Table 1. Bounds for the reliability of a 2-out-of-3 system.

γ δ Exact Thm 2 Thm 3 EP Thm 2 (upper)
1 2 .44 .37 .30 .36 .60
1 10 .682 .663 .630 .650 .799
1 100 .9449 .9444 .9434 .9439 .9682
10 20 .0895 .0886 .074 .074 .101
10 100 .565 .565 .558 .559 .581

It is seen that the simple lower bound e−at of Theorem 2 using the Perron-

Frobenius eigenvalue of QC is better than the EP bound. On the other hand, the

more easily computed bound e−ct from Theorem 3 is beaten by the EP bound, but

otherwise seems to behave satisfactorily at least for highly reliable systems. The

upper bounds using Theorem 2 are further away from the exact values than are

the lower bounds. However, they may still be useful especially for highly reliable

systems.

6. Concluding Remarks

The motivation for the article is a study of bounds for the reliability of multistate

systems. However, it is clear that the obtained results are valid for any Markov chain

with finite partially ordered state space and stochastically monotone transitions.

This of course extends the application area of the results.

The main idea of the approach is that, under the assumption of stochastic mono-

tonicity, one obtains simple and useful bounds for the reliability function Pm(T > t)

by computing the quasi-stationary distribution and the corresponding eigenvalue.

These bounds are given in Theorem 2, while Theorem 3 is a further simplification

involving a stationary distribution. It is believed, moreover, that the results of the

article give reasonable approximations also in the case of non-monotonicity.

The computations reported in the previous section indicate that the bounds are

improving as systems become more reliable. Preliminary investigations for larger

systems seem to confirm this. Theoretically, this fact is closely connected to limit

results (e.g. Keilson6) which state that life times of highly reliable systems tend to

be exponentially distributed. The advantage of giving bounds, as in this article, is
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that they are not merely limit results but applicable in any ”non-asymptotic” case.

An interesting question is, however, whether it is worthwhile to consider just

upper and lower bounds, given that modern computers are able to solve numeri-

cally the exact equations even for quite large systems. In many cases one would

of course do the complete computations. However, it is clear that the numerical

problem of just computing the largest eigenvalue and the corresponding eigenvector

of a matrix, is considerably less intensive, and thus enabling one to consider more

complex problems. Also, in many instances rough bounds of reliability are all that

is needed, particularly when taking into account the uncertainty already inherent in

the input data. A further motivation for our study is of course that the bounds are

of theoretical interest and may lead to new insight into the properties of Markov

chains.
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