
Competing risks for repairable systems:

A data study

Helge Langseth and Bo Henry Lindqvist

Department of Mathematical Sciences, Norwegian University of Science and

Technology, Norway

Abstract

We analyse a dataset from the Offshore Reliability Data (OREDA) Database, look-
ing for a model, which can be used to unveil aspects of the quality of the maintenance
performed. To do so we must investigate the mathematical modelling of maintenance
and repair of components that can fail due to a variety of failure mechanisms.

NOTE! UNTIL WE GET A “GO” FROM THE OREDA PROJECT

THE DATA IN Table 1 SHOULD BE TREATED AS CONFIDENTIAL.

FINAL ACCEPTANCE FROM OREDA IS EXPECTED IN THE NEAR

FUTURE.
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1 Introduction

In this paper we employ a model for components which fail due to one of a
series of “competing” failure mechanisms, each acting independently upon the
system. The components under consideration are repaired upon failure, but are
also preventively maintained. The preventive maintenance (PM) is performed
due to casual observation of an evolving failure. The maintenance need not
be perfect; we use a version of an imperfect repair model to allow a flexible
yet simple maintenance model. Our motivation for analysing this dataset is to
estimate quantities, which describe the “goodness” of the maintenance crew;
their ability to prevent failures by performing thorough maintenance at the
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correct time. Our main focus in this paper is to analyse a dataset from the
OREDA database (OREDA 2002), which gives the intermediate failure times,
the “winning” failure mechanism associated with each failure (i.e. the failure
mechanism leading to the failure), and the maintenance activity.

2 Dataset and model implications

The dataset we want to analyse is presented in Table 1. This dataset, which
is from the OREDA database (OREDA 2002), describes a single compres-
sor system on an offshore installation. A compressor system can be broken
down into several subsystems (compressor unit, lubrication system, shaft seal
system, etc.); this particular dataset gives an account of the compressor unit.
The compressor unit is again divided into several maintainable items. A main-
tainable item is defined in OREDA as “an item that contribute a part, or an
assembly of parts, that is normally the lowest indenture level during mainte-
nance”. The maintainable items making up the compressor unit are, among
others, valves, internal piping and radial bearing. From analysing the database
we can identify which maintainable items that lead to a particular failure of
the compressor unit, but we are not always able to tell which maintainable
items that are affected by the corresponding repair. We will therefore follow
the OREDA Handbook and make our analysis at the subunit level, neglect-
ing the (partial) information regarding maintainable items. The dataset gives
the time of each event, the failure mechanism leading to it, and the failure’s
severity.

The failures can roughly be seen as the result of two different failure mecha-
nisms, coded as either “1” or “2” in the FM column of Table 1. The last digit
of the FM code is used to give further details; 1.0 is a general description of
the FM (default value, e.g., “General mechanical failure”) whereas codes 1.1 –
1.4 are specialisations of this failure mechanism. The same coding is employed
for failure mechanism “2”. In our analysis we will focus on failure mechanism
“2”, where we group together failures from failure mechanisms coded with
values from 2.0 to 2.7. Failures due to other failure mechanisms are treated as
external events (i.e., random censoring).

Formally, we consider a mechanical component which is set into operation
at time t = 0. We assume that the component is (as good as) new at that
time. At some random times T1, T2, . . . the component fails. After failure the
component is immediately repaired and put back into service. The data can
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Time FM Severity

220 1.0 I

233 1.0 I

234 1.4 I

240 2.6 D

265 1.0 I

270 1.3 I

273 1.0 I

279 ? C

285 1.0 I

287 ? C

294 2.3 D

295 2.0 I

300 1.0 D

325 2.0 C

328 1.0 C

333 2.0 C

365 1.0 I

368 2.3 D

369 2.4 I

381 1.0 I

417 2.0 I

418 2.1 D

Time FM Severity

429 2.0 C

460 ? ?

470 2.0 C

474 1.0 C

475 2.0 I

476 2.5 I

508 2.2 D

522 2.0 I

523 2.0 I

535 2.0 D

542 1.0 D

570 2.0 I

580 1.2 C

604 2.0 D

612 2.0 C

613 2.0 C

614 2.0 C

615 2.0 D

634 1.0 I

636 ? C

637 1.0 D

638 2.0 I

Time FM Severity

651 1.0 D

657 1.0 D

660 2.0 D

666 1.0 I

668 1.0 I

680 2.0 D

681 1.0 D

684 2.0 D

691 1.0 I

693 1.0 D

705 1.0 C

717 1.0 C

834 2.0 C

837 1.2 C

841 1.0 C

843 1.0 C

845 1.0 C

875 1.0 C

972 1.0 C

1037 1.0 C

1084 1.0 I

1091 1.0 D

Time FM Severity

1109 2.0 D

1117 2.2 I

1197 2.0 C

1258 1.1 C

1269 2.0 C

1297 2.0 D

1309 1.0 D

1322 2.0 C

1346 2.0 D

1349 2.0 D

1359 2.7 D

1363 1.0 C

1448 2.0 C

1476 2.0 D

1481 2.0 D

1557 1.3 C

1606 1.3 I

1610 2.0 D

1642 ? D

1659 2.7 D

Table 1
This dataset describes the service time of a single component over a period of 1659
time units taken from the OREDA data (OREDA 2002). The failures are caused
by different failure mechanisms, coded in the FM column. The failure mechanisms
can roughly be grouped into to groups: One containing codes 1.0 – 1.4; the other
containing codes 2.0 – 2.7. Each group of failure mechanisms is coded “hierarchi-
cally”: For instance is 1.0 a general description of the failure mechanisms in the
first group whereas codes 1.1 – 1.4 are specialisations of this failure mechanism.
The same coding is employed for the other group. Severity describes the criticality
of the failure (“C” denotes critical failures, “D” are degraded failures, “I” are incip-
ient failures, and “?” represent missing data). For confidentiality reasons all failure
times are scaled with an undisclosed factor α (that is, if the true failure time is Ti,
the reported failure time is α · Ti; as this corresponds to a change of scale only, it
does not change the validity of the following analysis).

now be given as an ordered sequence of points

(Yi, Ji); i = 1, 2, . . . , n, (1)

where each point represents an event. Here
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Yi = inter-event time, i.e. time since previous event

(time since start of service if i = 1)

Ji =



























0 if critical failure

1 if degraded failure

2 if external event.

(2)

We have to find a model for data of type (1). The basic ingredient in such a
model is the hazard rate ψ(t) at time t, for a component which is new at time
t = 0. We assume that ψ(t) is a continuous and integrable function on [0,∞).
In practice it will be important to estimate ψ(·) since this information may,
e.g., be used to plan future maintenance strategies.

The first thing we observe from our dataset is that when a failure is detected,
the maintenance crew will repair the failure, and put the component back in
operation. Thus, the dataset must be consider using theory for repairable sys-
tems (see e.g., (Ascher and Feingold 1984)). The most frequently used models
for repairable systems assume either perfect repair (renewal process models)
or minimal repair (nonhomogeneous Poisson-process models). In our case this
picture is complicated by the fact that the analysis is performed at the subunit
level. Some of the maintainable items building up the compressor unit will be
repaired thoroughly after an event, whereas others may be left as they are or
given only minor adjustments. Hence, neither perfect nor minimal repair mod-
els may be appropriate, and we shall here adopt the imperfect repair model
presented by Brown and Proschan (1983). This will introduce one parame-
ter, p, which is the probability of perfect repair for a preventive maintenance.
This quantity is of interest since it can be used as indication of the quality
of maintenance. The parameters may in practice be compared between plants
and companies, and thereby unveil maintenance improvement potential.

The events can be categorised as either i) Critical failures, ii) Degraded failures
iii) Incipient failures) or iv) External events (component taken out of service
or some other random censoring). This information can be read off the Severity
column in Table 1. In the OREDA database a critical failure is an event that
causes immediate and complete loss of a system’s capability of providing its
output. A degraded failure is defined as a failure that prevents the system
from providing its output within specifications, and which may develop into
a critical failure in time. An incipient failure is defined as a failure that not
immediately causes loss of the system’s capability of providing its output, but
that could develop to a critical or degraded failure in the near future if not
attended to. We will not distinguish between incipient and degraded failures
in our analysis, but term both severities “Degraded”.
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Failure

Performance
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Good as new
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t

Fig. 1. Component with degrading performance

The development of a failure can be seen as depicted in Fig. 1. We assume
that the component is continuously deteriorating when used, so that the per-
formance gradually degrades until it falls outside a preset acceptable margin.
As soon as the performance is unacceptable, the component experiences a crit-
ical failure. Before the component fails it may exhibit inferior performance,
which will be found as a degraded failure in our dataset. This is a “signal” to
the maintenance crew that a critical failure is approaching, and that the infe-
rior component may be repaired. In our dataset these “signals” are detected
through continuous condition monitoring, observed production interference,
or functional testing. When the maintenance crew intervenes and repairs a
component before it fails critically, the repair action is called (an unsched-
uled) preventive maintenance. The maintenance crew will typically strive for
avoiding critical failures, because they are considered more costly than the
degraded ones.

Our model must take into account the relation between preventive mainte-
nance and critical failures. As it is assumed that the component gives some
kind of “signal”, which will alert the maintenance crew, it is not reasonable
to model the (potential) times for preventive maintenance and critical failures
as stochastically independent. We shall therefore adopt the random signs cen-
soring of Cooke (1996). This will eventually introduce a single new parameter
q, with interpretation as the probability that a critical failure is avoided by a
preceding unscheduled preventive maintenance.

The dataset we analyse in this paper stems from a single component, but
the analysis can easily be extended to a more general by assuming that all
components fail independently of each other.
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3 Basic ingredients of the model

In this section we describe and discuss the two main building blocks of the
model we will use. In Section 3.1 we consider the concept of imperfect repair, as
defined by Brown and Proschan (1983). Then in Section 3.2 we introduce our
basic model for the relation between preventive and corrective maintenance.

3.1 Imperfect repair

The repairable systems model we propose to use for this dataset is motivated
by the imperfect repair model of Brown and Proschan (1983), which we term
the BP model in the following. We therefore start with a review of this model.
As usual, we define Ti to be the consecutive event times, and we use Yi for the
inter-event times (time between events). For simplicity of notation we assume
that the component is observed from time t = 0, and with the definition
T0 = 0, we have Yi = Ti − Ti−1 for i = 1, 2, . . . , n where n is the number
of events (see Figure 2). We use ψ(t) for the hazard rate for a component of
“age” t, and

λ(t | F t−) = lim
∆t↓0

P (Event in [t, t + ∆t) | F t−)

∆t

for the conditional intensity given F t− , the history of the counting process
up to time t, see (Andersen et al. 1992). Furthermore, N(t) is the number of
events in (0, t] and N(t−) is the number of events in (0, t). We will assume
that failures are repaired immediately, and we disregard the time to repair.

This notation enables us to repeat some of the most standard repair models:
Perfect repair is modelled by λ (t | F t−) = ψ

(

t − TN(t−)

)

where t − TN(t−) is
the time since the last event, i.e., age is measured by the inter-event times
(Y in Figure 2); minimal repair is given by λ (t | F t−) = ψ (t), that is, the
age is equal to the calendar time (T in Figure 2); imperfect repair can be

modelled by λ (t | F t−) = ψ
(

ΞN(t−) + t − TN(t−)

)

where ΞN(t−) ∈
[

0, TN(t−)

]

is
the effective age immediately after the last repair. In the BP model, ΞN(t−) is
defined indirectly by letting a failed component be given perfect repair with
probability p; with probability 1 − p it is treated with minimal repair. To
determine Ξi (i > 1) we therefore need both T (or Y ) and the maintenance
history.
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Ξ1

Y1

Ξ3

Ξ2

0 T3Y3
T2Y2

T1

t

Fig. 2. We have three time dimensions to measure the age of a component: Age
w.r.t. calendar time (T ), age w.r.t. inter-event times (Y ), and effective age (Ξ).
The value of Ξi, i > 1, depends upon both inter-event times as well as maintenance
history. This is indicated by a dotted line for the Ξi’s.

It is easy to see that for i ≥ 1 we have under the BP model that Ξi = 0 with
probability p and Ξi = Ξi−1 + Yi with probability 1 − p; Ξ0 = 0 by definition.
We can also express Ξi by using the inter-event times:

Ξi =



































































0 with probability p

Yi with probability p · (1 − p)

Yi−1 + Yi with probability p · (1 − p)2

...
∑i

j=2 Yj with probability p · (1 − p)i−2

∑i
j=1 Yj with probability (1 − p)i−1

. (3)

For simplicity of notation we follow (Kijima 1989) and introduce the random
variable Di, used to denote the outcome of the repair after the i’th event;
Di = 0 if it was a perfect repair and Di = 1 if it was minimal. The BP
model with parameter p corresponds to assuming that all Di are i.i.d. with
P (Di = 0) = p, P (Di = 1) = 1 − p, i = 1, . . . , n; we will assume that Di may
be unobserved. It follows that

Ξi =
i

∑

j=1





i
∏

k=j

Dk



 Yj . (4)

Let h = {D1, D2, . . . , Dn} be a repair history; that is, a set consisting of
realisation of all maintenance actions telling if it was perfect or minimal. Let
H be the set of possible repair histories. Note that |H| = 2n−1. (Strictly
speaking, there are 2n possible repair histories, but as the last maintenance
action has no effect on the observed inter-event times we have no interest in
the repair at the last event, and it suffices to consider 2n−1 histories.)

Notice that we can express the conditional intensity given the history as
λ(t | F t−) =ψ(ΞN(t−) + t−TN(t−)). Consequently, to make the BP model oper-
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ational, we only need the parameter p and the distribution function fΞ(ξ) =
ψ(ξ) exp(−Ψ(ξ)); Ψ(ξ) is the accumulated hazard, Ψ(ξ) =

∫ ξ
u=0 ψ(u) du. Hav-

ing defined those, the distribution function of the inter-event time Yi is to be
calculated as

fYi
(yi | y1, . . . , yi−1) =

i
∑

j=1

fΞ





i
∑

k=j

yk



 · P





i−1
∏

k=j

Dk −
i−1
∏

k=j−1

Dk = 1



 , (5)

where D0 = 0 (the component is assumed to be as good as new at t = 0) and
we define

∏i−1
k=i Dk = 1. It is enlightening to recognise Equation (5) as a mixture

distribution, where the mixture weights, P
(

∏i−1
k=j Dk −

∏i−1
k=j−1 Dk = 1

)

, can
be interpreted as the probability that the j’th repair was the last perfect repair
before time Ti.

One of our goals will be to estimate the BP-parameter p. It is a quantity of
some interest, because it can be used as an indication of the quality of the
performed maintenance. The parameter can be compared between plants and
companies, and thereby unveil maintenance improvement potential (because
it measures maintenance quality independent of the failure processes).

3.2 Modelling preventive maintenance versus critical failures

Recall from Section 2 that PM interventions are reported as degraded failures.
Degraded failures censor critical failures, and the two types of failure may be
highly correlated. We model the interaction between PM and critical failures
as a competing risks problem. The “true” underlying competing risks model is
not identifiable from a competing risks dataset, in particular can any dataset
of this type be explained by a model of independent risks (Tsiatis 1975). Bunea
and Bedford (2002) investigate the result of this model uncertainty on main-
tenance optimisation, and conclude that the effect of making wrong model
assumptions can be substantial. Input from domain experts and careful anal-
ysis of the information actually available in the dataset is therefore of major
importance when deciding how to model the relationship between preventive
maintenance and critical failures. In our case, the degraded failures are de-
fined as a step towards critical failures (consider again Fig. 1). Maintenance
personnel who find a component in a degraded state will (typically) repair
it to avoid a critical failure, because critical failures usually lead to higher
costs than repairing the degraded failure. Hence, it is reasonable to assume
the competing risks to be positively correlated.
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A number of possible ways to model interaction between degraded and critical
failures are discussed by Cooke (1996). We adopt one of these, called random
signs censoring. In the notation introduced in Section 2 we consider here the
case when we observe pairs (Yi, Ji) where the Yi are inter-event times whereas
the Ji are indicators of failure type (critical or degraded). For a typical pair
(Y, J) we let Y be the minimum of the potential critical failure time X and
the potential degraded failure time Z, while J = I(Z < X) is the indicator
of the event {Z < X} (assuming that P (Z = X) = 0 and that there are no
external events). Thus we have a competing risks problem. However, while X
and Z would traditionally be treated as independent, random signs censoring
makes them dependent in a special way.

The basic assumption of random signs censoring is that the event of success-
ful preventive maintenance, {Z < X}, is stochastically independent of the
potential critical failure time X. In other words, the conditional probability
q(x) = P (Z < X|X = x) does not depend on the value of x.

Cooke (1996) does not fully describe random signs censoring, as the conditional
density function f(z|X = x, Z < X) can be chosen arbitrarily. Lindqvist et al.
(2004) develop a framework called the Repair Alert (RA) model. It is a special
case of random signs censoring, where the existence of a continuous function
G(t) such that

P (Z ≤ z |X = x, Z < X) =
G(z)

G(x)
, 0 ≤ z ≤ x (6)

is assumed. Lindqvist et al. (2004) show that for any pair of sub-survival
functions compatible with random signs censoring there exists exactly one
repair alert model (under some regularity condition).

The repair alert model introduces the new parameters G(·) and q. Langseth
and Lindqvist (2003) propose a special parametrisation of the RA model called
the Intensity Proportional Repair Alert (IPRA) model. This model is defined
as follows:

• Let X have hazard rate function ω(·) and cumulative hazard Ω(·).
• {Z < X} and X are stochastically independent.
• Conditionally, given Z < X and X = x, the distribution of the intervention

time Z satisfies

P (Z ≤ z |X = x, Z < X) =
Ω(z)

Ω(x)
, 0 ≤ z ≤ x . (7)
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Thus, the IPRA model is a repair alert model where G(t) = Ω(t). The IPRA
model therefore assumes the conditional density of Z proportional to the inten-
sity of the underlying failure process. This seems like a coarse but somewhat
reasonable description of the behaviour of a competent maintenance crew. The
assumptions above determine the distribution for Y = min(X,Z) as

fY (y) = (1 − q) ω(y) exp (−Ω(y)) + q ω(y) Ie(Ω(y)) (8)

where Ie(t) =
∫ ∞
t exp(−u)/u du is known as the exponential integral (Abramowitz

and Stegun 1965).

Using the IPRA model, we define the distribution of Y , the time to the next
event for a component as good as new, from the hazard rate of the failure
process, ω(t), and the parameter q. In particular, this defines ψ(t), the inten-
sity of events. Finally, we can use this to calculate the conditional intensity
given the history, which is given as λ (t | F t−) = ψ

(

ΞN(t−) + t − TN(t−)

)

un-

der the BP-model. Langseth and Lindqvist (2003) prove identifiability in this
combined model.

4 The data analysis

In this section we will generate a formal test for the applicability of the com-
bined model for the present dataset. We will assume that the underlying dis-
tribution of failures (the distribution of X, when using the notation of Section
3.2) follows the log-normal distribution.

4.1 Estimation of φ(t) under imperfect repair

One of the fundamental statistics when working with competing risks models
is the probability of repair beyond t, P (Z < X|Z ≥ t,X ≥ t), denoted φ(t) by
Cooke (1996). One reason for this quantity to be of such importance is that
many classes of models give a unique footprint in terms of the set of possible
functions φ(t) they can give rise to. For example, the repair alert models are
characterised as the set of models for which φ(t) < φ(0) for all t > 0 (recall
that φ(0) = q). Similarly, it is simple algebraic manipulations to see that the
footprint of the IPRA model can be expressed as

φ(t)/q =
Ω(t)Ie(Ω(t)) − exp(−Ω(t))

q Ω(t)Ie(Ω(t)) − exp(−Ω(t))
. (9)
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To test if the IPRA model fits our dataset well we would like to compare
the observed φ(·) to the functional relationship prescribed by Equation (9).
However, to do so we must be able to calculate φ(·) also when the data stems
from a repairable system.

Under perfect repair, we use the relationship φ(t) = P (Z<X,Z≥t)
P (Z<X,Z≥t)+P (Z>X,X≥t)

to

generate the consistent estimator φ̂(t) = {#z > t}/ ({#z > t} + {#x > t});
we use {#z > t} to denote the number of observed events where {Z < X,Z >
t} and similarly {#x > t} represents the number of observed events where
{Z > X,X > t}. When we turn to the imperfect repair, things are not that
simple: We do not know the effective age of the component as it fails, and
are therefore not able to calculate {#x > t} and {#z > t} directly. Note,
however, that we are able to calculate these numbers when we condition on a
particular repair history, and the correct way of estimating φ(t) under the BP
model would be to sum over all possible repair histories

φ̂(t|p) =
∑

h∈H

P (h|p) ·
{#z > t|h}

{#z > t|h} + {#x > t|h}
,

where φ(t) now must be calculated as a function of p and therefore is denoted
φ(t|p). However, these calculations come at the computational cost of order
O(2n+m). In our case, this corresponds to summing approximately 1025 terms,
a computationally prohibitive task.

We therefore need an approximation to φ̂(t|p). Our first approach is based on
sampling. In particular, we sample N repair histories hi, and define

φ̂N(t|p) =
1

N

N
∑

i=1

{#z > t|hi}

{#z > t|hi} + {#x > t|hi}
.

Obviously, φ̂N(t|p) converges to φ̂(t|p) a.s. as N → ∞. We can therefore
approximate φ(t|p) at the cost O (N(n + m)). In practice, however, N must
be chosen quite large to offer reasonable results, and this motivates a different
approximation:

φ̂S(t | p) =

∑n
j=1 P (zj + Ξj−1 > t|x,z)

∑n
j=1 P (zj + Ξj−1 > t|x,z) +

∑m
i=1 P (xi + Ξi−1 > t|x,z)

(10)

where P (zj + Ξj−1 > t|x,z) and P (xi + Ξi−1 > t|x,z) can be calculated

using Equation (3). It is a consequence of Slutsky’s theorem that φ̂S(t|p) is
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Fig. 3. The estimates φ̂N (t|p) (1000 samples per point; thin line) and φ̂S(t|p) (thick
line) for our dataset. The maximum likelihood estimate p̂ = .74 was used in the
calculations.

a consistent estimator of φ(t|p). It can be calculated in only O ((n + m)2)
operations. The applicability of the two approximations for our dataset can
be seen in Fig. 3. They give similar results in this case (n = 12, m = 30,
N = 1000), although φ̂S(t|p) appears smoother for larger values of t. In the
following we use φ̂S(t|p) as our approximation of φ̂(t|p) if not stating otherwise.

4.2 Testing the applicability of IPRA

To use the IPRA model we make two assumptions:

(1) The Repair Alert model must be applicable; φ(t|p) < φ(0|p) for all t > 0.
(2) Among the RA models, the IPRA model is to be chosen; G(t) = Ω(t).

It is natural to consider a two-stage test: First test if the “true” (underlying)
φ(t|p) is dominated at zero, thereafter test if IPRA is a good candidate among
the RA models. However, there does not, to the best of our knowledge, exist
any test for the applicability of RA under imperfect repair. Dewan et al. (2002)
show how U -statistics can be used to test various hypothesis regarding φ(t),
but it is not obvious how the test statistic behaves when the model is integrated
into the repairable systems framework. Therefore, we will not proceed along
these lines here, but rather propose to use parametric bootstrap (see, e.g.,
(Efron and Tibshirani 1993)) to test the IPRA model directly.
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Fig. 4. The plot of the observed footprint (averaged over all repair histories;
p = p̂ = .74) as compared with the theoretical one. We observe reasonable fit
for smaller t, say Ω(t) ≤ 1.5, but poorer fit for larger values of t.

We want to use the footprint in Equation (9) as our starting point for this
test. By substituting u = Ω(t), we express the IPRA footprint as

v(u|q) =
u Ie(u) − exp(−u)

q u Ie(u) − exp(−u)
. (11)

Note that this footprint only implicitly depends on the cumulative hazard
Ω(t). Fig. 4 shows v(u|q) (Ω(t) and q fitted by maximum likelihood parameters)
together with its observed values. We get a reasonable fit for small values of u,
whereas the fit is rather poor for u > 1.5. However, the number of data points
in this part of the model is rather small and the poor fit might therefore
be expected. (When the system is as good as new there is a probability of
exp(−1.5) = .78 of failure beyond that time, and even some of these events
will be censored by earlier maintenance.)

To formally test how applicable the combined model is for this dataset, we
define ∆ as the area between the theoretical footprint and the observed values
in Fig. 4. A large value of ∆ will suggest that the combination of IPRA
and BP should be rejected. We use parametric bootstrap to approximate ∆’s
distribution. The approximated density function, called f̂ (B)(δ) in Fig. 5, can
be used to make formal inference regarding the model. 1 More precisely, we

1 On the technical side we note that since the estimates of v(u|q) becomes less
certain as u grows large we decided to only look at the area between the theoretical
and empirical functions for 0 ≤ u ≤ − ln(.1), that is we consider the time interval
for which 90% of the failures would occur had there been no maintenance.
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δ)

2.521.510.50

1

0

Fig. 5. f̂ (B)(δ) is the bootstrap approximation of the distribution function of ∆. ∆
is the area between footprint v(u|p) and observed values.

test the hypothesis:

H0 : The data stems from a IPRA + BP model.

H1 : The data does not stem from a IPRA + BP model.

The dataset gives ∆ = .65, and from the bootstrap distribution we find that
P (B)(∆ > .65 |H0) = 0.6. Hence, we accept the hypothesis that IPRA com-
bined with BP defines an appropriate class of models for this dataset.

4.3 Do we need a repairable systems model

To this end we have fitted a IPRA model for the time between events, and
added a BP model on top of that to model the repair of the system. The
test in the last section accepted the hypothesis that this combined model
generated the dataset in Table 1. The maximum likelihood parametrisation of
the model was to use p̂ = .74 in the BP model, combined with the IPRA-model
where q̂ = .65, and the underlying failure process was assumed to follow the
Log Normal distributions; we used the maximum likelihood estimates for the
parameters: µ̂ = 3.7 and τ̂ 2 = 1.82.

To test whether the repairable system part of the model is required, we use the
likelihood ratio test. The full model as outlined in Section 3 (p̂ = .74) obtains a
log likelihood of −212.1. The IPRA as renewal process (all repairs are perfect;
p = 1) gives log likelihood of −214.4, which is significantly poorer than the full
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model at level 0.03. IPRA as a nonhomogeneous Poisson Process (all repairs
are minimal; p = 0) gives log likelihood of −258.9, which is significantly poorer
than the full model at all reasonable levels. We therefore conclude that the
repairable systems model is indeed required (et level .03); this is in accordance
with expert knowledge, which also points towards perfect and minimal repair
models being unacceptable.

5 Conclusions

In this paper we have analysed a dataset from the OREDA database (OREDA
2002) describing a compressor system. We fitted a competing risks model and
coupled that with the imperfect repair. Inference was done to verify that this
model was capable of describing the dataset well.

We stress that due to non-identifiability of competing risks problems we can-
not really infer that IPRA combined with the BP model is the correct model
for the present dataset. We can only conclude that the data does not re-
ject this combined model, and that if we where to choose a building-block
among the RA models, then IPRA can be a reasonable alternative (this is
also strengthened by the fact that IPRA is inexpensive w.r.t. the number of
required parameter). To be advocating this model we would need to discuss
the assumptions of RA with domain experts.

Leaving non-identifiability issues aside, the main goal of our analysis has been
to find parameters that describe the quality of the performed maintenance.
We have fitted maximum likelihood parameters, and found that the mainte-
nance crew’s “thoroughness” is quantified by the parameter p (p̂ = .74) and
their “eagerness” by q (q̂ = .65). It is our belief that these numbers, together
with information about the annual maintenance expenditure and the number
of critical failures that occur per year, characterise the efficiency of the main-
tenance at a level that can be compared between different maintenance crews
and even between different installations.

Acknowledgements

We thank the OREDA project represented by the Steering Committee Chair-
man Runar Østebø and Project Manager Terje Dammen for making the data

15



in Table 1 available to us. Furthermore, we thank the participants at the Work-
shop on Analysis of Competing Risks – Statistical and Probabilistic Approach
(Delft, Holland) for interesting discussions.

References

Abramowitz, M. and I. A. Stegun (1965). Handbook of Mathematical Func-
tions. New York: Dover Publications.

Andersen, P., Ø. Borgan, R. Gill, and N. Keiding (1992). Statistical models
based on counting processes. New York: Springer-Verlag.

Ascher, H. and H. Feingold (1984). Repairable Systems Reliability – Mod-
eling, Inference, Misconceptions and Their Causes. New York: Marcel
Dekker, Inc.

Brown, M. and F. Proschan (1983). Imperfect repair. Journal of Applied
Probability 20, 851–859.

Bunea, C. and T. Bedford (2002). The effect of model uncertainty on main-
tenance optimization. IEEE Transactions on Reliability 51 (4), 486–493.

Cooke, R. M. (1996). The design of reliability data bases, Part I and Part
II. Reliability Engineering and System Safety 52, 137–146 and 209–223.

Dewan, I., J. V. Deshpande, and S. B. Kulathinal (2002). On testing depen-
dence between time to failure and cause of failure via conditional prob-
abilities. Technical Report isid/ms/2002/17, Statistics&Mathematics
Unit, Indian Statistical Institute, Delhi Centre.

Efron, B. and R. J. Tibshirani (1993). An introduction to the bootstrap. New
York: Chapmann & Hall.

Kijima, M. (1989). Some results for repairable systems with general repair.
Journal of Applied Probability 26, 89–102.

Langseth, H. and B. H. Lindqvist (2003). A maintenance model for compo-
nents exposed to several failure modes and imperfect repair. In K. Dok-
sum and B. H. Lindqvist (Eds.), Mathematical and Statistical Methods in
Reliability, Quality, Reliability and Engineering Statistics, Chapter 27,
pp. 415–430. Singapore: World Scientific Publishing Co.

Lindqvist, B. H., H. Langseth, and B. Støve (2004). Modeling of depen-
dence between critical failure and preventive maintenance: The repair
alert model. Under review for inclusion in this special issue. Available
at http://www.math.ntnu.no/∼helgel/ra.pdf.

OREDA (2002). Offshore Reliability Data Handbookk (4th ed.). Distributed
by Det Norske Veritas, P.O. Box 300, N-1322 Høvik, Norway. See also
http://www.oreda.com/.

Tsiatis, A. A. (1975). A nonidentifiability aspect of the problem of com-
peting risks. Proceedings of the National Academy of Sciences USA 72,
20–22.

16


