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Abstract

Consider the competing risks situation for a component which may be subject to

either a failure or a preventive maintenance action, where the latter will prevent the

failure. It is then reasonable to expect a dependence between the failure mechanism

and the PM regime. This paper reviews some modelling approaches and introduces

a new approach based on modelling of the degradation of a component by means of

Wiener processes, with failure corresponding to the first crossing of a certain level,

and potential time for maintenance corresponding to the crossing of a certain lower

degradation level.

1 Introduction

The idea of competing risks is to model the situation where units are exposed to several

risks and fail due to one of them. We observe two random variables for each individual,

(Y, δ), where Y is the time to failure of the individual, and δ is the cause of failure.

Our motivation and main application in the present paper is the competing risks sit-

uation occurring when a potential component failure at some time X may be avoided by
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a preventive maintenance (PM) at time Z. The experienced event will in this case be at

time Y = min(X,Z), and it will either be a failure or a PM. It is convenient to define

δ = I(Z < X), where I(A) is the indicator function of the event A. Thus δ = 0 means

that the component fails and δ = 1 means that it is preventively maintained.

Note that the observable result is the pair (Y, δ), rather than the underlying timesX and

Z, which are often the times of interest. For example, knowing the distribution of X would

be important as a basis for maintenance optimization. It is well known (Crowder, 2001,

Ch. 7), however, that in a competing risks case as described here, the marginal distributions

of X and Z are not identifiable from observation of (Y, δ) alone unless specific assumptions

are made on the dependence between X and Z. One such assumption is that X and Z are

independent (Crowder, 2001, Ch. 7). This assumption is not reasonable in our application,

however, since the maintenance crew is likely to have some information regarding the

component’s state during operation. This insight is used to perform maintenance with the

aim of avoiding component failures. We are thus in practice usually faced with a situation

of dependent competing risks between X and Z.

Cooke (1993, 1996) introduced the notion of random signs censoring which is tailored

for such cases. In our notation, random signs censoring can be defined as follows:

Definition 1 Let (X,Z) be a pair of life variables. Then Z is called a random signs

censoring of X if the event {Z < X} is stochastically independent of X.

Thus, random signs censoring means that the event that the failure of the component

is preceded by PM, is not influenced by the time X at which the component fails or would

have failed without PM. The idea is that the component emits some kind of signal before

failure, and that this signal is discovered with a probability which does not depend on

the age of the component. Moreover, random signs censoring implies identifiability of the

distribution of X, while the distribution of Z is not identifiable in general under these

assumptions.
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Lindqvist, Støve and Langseth (2006) suggested a model called the repair alert model

for describing the joint behavior of failure times X and PM-times Z. This model is a

special case of random signs censoring obtained by introducing a repair alert function

which describes the “alertness” of the maintenance crew as a function of time.

In the present paper we suggest another modelling approach which again leads to a

model satisfying the random signs property. The approach is based on modelling of the

degradation of a component by means of Wiener processes, with failure corresponding to

the first passage time of a certain level. As is well known (Chhikara and Folks, 1989), this

implies that the failure time has an inverse Gaussian distribution. The clue is that a PM

may be performed when the degradation process reaches a certain level below the failure

level. Whitmore (1986) studied a similar case using first passage times of multidimensional

Wiener processes to model independent competing risks. Our approach is related to the

one of Whitmore, Crowder and Lawless (1998) who considered a marker process which is

correlated to the latent failure process. Aalen and Gjessing (2001) gave a review of failure

time models based on first passage times of stochastic processes. For an application of

inverse Gaussian distributions in accelerated life testing we refer to Doksum and Høyland

(1992).

2 Notation

Throughout the paper we assume that (X,Z) is a pair of continuously distributed life

variables such that P (X = Z) = 0. We let FX(t) = P (X ≤ t) and FZ(t) = P (Z ≤ t)

be the cumulative distribution functions of X and Z, respectively. The subdistribution

functions of X and Z are defined as, respectively, F ∗

X(t) = P (X ≤ t,X < Z) and F ∗

Z(t) =

P (Z ≤ t, Z < X). Similarly, the subsurvival functions are S∗

X(t) = P (X > t,X < Z) and

S∗

Z(t) = P (Z > t, Z < X), while the subdensity functions are f ∗

X(t) = F ∗
′

X (t) = −S∗
′

X(t)

and similarly for Z.

Note that the functions F ∗

X and F ∗

Z are nondecreasing with F ∗

X(0) = 0 and F ∗

Z(0) = 0.
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Moreover, we have F ∗

X(∞) + F ∗

Z(∞) = 1. Any pair of functions K1, K2 satisfying these

conditions, will later be referred to as a subdistribution pair.

We will also use the notion of conditional distribution functions, defined by F̃X(t) =

P (X ≤ t|X < Z) and F̃Z(t) = P (Z ≤ t|Z < X). Note then that F̃X(t) = F ∗

X(t)/F
∗

X(∞),

F̃Z(t) = F ∗

Z(t)/F
∗

Z(∞).

3 Random signs and the repair alert model

It was mentioned in the introduction that the marginal distribution of X is identifiable

under random signs censoring. This follows directly from Definition 1, since we must have

F̃X(t) = P (X ≤ t|X < Z) = P (X ≤ t) = FX(t).

Hence we have the somewhat surprising result that the marginal distribution of X is the

same as the distribution of the observed occurrences of X.

The following theorem states that a random signs distribution for (X,Z) exists if and

only if the conditional distribution function of X is below that of Z.

Theorem 1 (Cooke, 1993). Let K1, K2 be a subdistribution pair. Then the following are

equivalent:

(i) There exists a pair (X,Z) of life variables such that Z is a random signs censoring of

X, and such that

F ∗

X(t) = K1(t) for all t ≥ 0, F ∗

Z(t) = K2(t)

for all t ≥ 0.

(ii)

K1(t)

K1(∞)
<

K2(t)

K2(∞)
for all t > 0.

The intuitive implication of this result is that the condition F̃X(t) < F̃Z(t) for all t > 0

(corresponding to (ii)), is consistent with Z being a random signs censoring of X.
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On the other hand, if F̃X(t) ≥ F̃Z(t) for some t, then there is no joint distribution

of (X,Z) for which the random signs requirement holds. For more discussion on random

signs censoring and its applications we refer to Cooke (1993, 1996), and Bedford and Cooke

(2001, Ch. 9).

The repair alert model is defined as follows.

Definition 2 (Lindqvist et al. 1996). The pair (X,Z) of life variables satisfies the re-

quirements of the repair alert model provided the following two conditions both hold:

(i) The event {Z < X} is stochastically independent of X (i.e. Z is a random signs

censoring of X).

(ii) There exists an increasing function G with G(0) = 0 such that for all x > 0,

P (Z ≤ z|Z < X,X = x) =
G(z)

G(x)
, 0 < z ≤ x .

The function G is called the cumulative repair alert function. Its derivative g is called

the repair alert function.

The repair alert model is, as already noted, a specialization of random signs censoring,

obtained by introducing the repair alert function g. Part (ii) of the definition means that,

given a potential failure at time X = x, and given that a PM will be performed before

that time, the conditional density of the actual time Z of PM is proportional to g. The

repair alert function is meant to reflect the reaction of the maintenance crew. Thus g(t)

ought to be large at times t for which failures are expected and the alert therefore should

be high. Langseth and Lindqvist (2003) simply used g(t) = λX(t) where λX is the hazard

rate of the failure time X.

5



4 The Wiener process and the inverse Gaussian dis-

tribution

Instead of viewing a failure as a sudden happening, it can be considered as an ending point

of some underlying degradation process. Here we shall assume that the degradation is

modelled by a Wiener process as described in Aalen and Gjessing (2001).

Definition 3 A stochastic process {W (t), t ≥ 0} is a Wiener process with drift coefficient

ν and variance parameter σ2 if

1. W (0) = 0,

2. {W (t), t ≥ 0} has stationary and independent increments,

3. for every t > 0, W (t) is normally distributed with mean νt and variance σ2t.

When modelling degradation with a Wiener process it is natural to assume a positive drift

coefficient. An illustrative example is given in Figure 1.

A special feature that makes the Wiener process mathematically tractable is that the

first passage time to a level a > 0 is inverse Gaussian distributed with density

f(t; ν, σ, a) =
a√
2πσ

t−
3

2 exp

{

−(a− νt)2

2tσ2

}

, t > 0,

(Chhikara and Folks, 1989). From this density it can be seen that the variance parameter

σ2 is appears only in the ratios a
σ
and ν

σ
. As noted by Aalen and Gjessing (2001), this

means that we can put σ = 1 without loss of generality. This leads to the density function

f(t; ν, a) =
a√
2π

t−
3

2 exp

{

−(a− νt)2

2t

}

, t > 0. (1)

which will be used later in this paper. We denote this distribution by IG(ν, a), the inverse

Gaussian distribution with parameters ν and a. The corresponding survival function is

given by

S(t; ν, a) = Φ

(

a− νt√
t

)

− e2aνΦ

(−a− νt√
t

)

. (2)

where Φ is the standard normal cumulative distribution function.
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Figure 1: Illustration of a Wiener process with W (0) = w0 and positive drift. The time T
is the first passage time to the level a > w0, and therefore inverse Gaussian distributed.

5 Basic Wiener process model for PM

Now assume that the state of the component follows a Wiener process with W (0) = 0 and

positive drift ν. When the process reaches a level s > 0, the item emits a “signal” in the

sense of Cooke’s random signs censoring. The time this happens is Ts, the first passage

time to s, and hence has the inverse Gaussian distribution IG(ν, s) with density f(t; ν, s)

given by (1) and survival function S(t; ν, s) given by (2). If the signal is detected, the time

Ts will be observed, and we thus put Z = Ts and say that a PM is performed at Z. If the

signal is not detected, the time Z will not be observed, and the process will go on until

it reaches a critical level c > s at time Tc, where the item fails. In this case we observe

X = Tc where Tc has the distribution IG(ν, c).

The probability of detecting the signal when the process reaches level s is assumed to

be q, 0 < q < 1, and the event that the signal is detected is assumed to be independent of

the Wiener process.
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Figure 2: Illustration of a Wiener process with a level s where a signal is emitted. If the
signal is detected, then a PM is performed at time Z = Ts and X is not observed. If the
signal is not detected, the process goes on to a critical level c, where the corresponding
time to failure X = Tc is observed. In this case Z is not observed and can be modelled as
any time past Tc, here illustrated by time Tv where v > c.

Note that the potential failure time X can be taken to be inverse Gaussian distributed

with parameters ν and c whether or not Z is observed. On the other hand, it should be

noted that while Z conditionally given Z < X is inverse Gaussian distributed, it is usually

not the case that Z itself is inverse Gaussian distributed. This is since Z may be given any

value greater than X when the process is not stopped at s.

The situation is described in Figure 2, which shows the path of a Wiener process with

positive drift. The levels s and c are indicated together with the corresponding times Ts

and Tc. In addition there is indicated a third level v > c with a corresponding time Tv,

such that Z = Ts if there is a PM and Z = Tv if a failure is observed. This is only an

illustration to show a possible behavior of Z when it is larger than X. The time Tv will,

however, never be observed.

We now show that the basic model described above satisfies the requirements of random

signs censoring. Recall that Z is a random signs censoring of X if the event {Z < X} is
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independent of X. In the present case, the event {Z < X} means that the emitted signal

is detected. This happens with probability q, and the event is by assumption independent

of the Wiener process and hence independent of X. Thus Z is indeed a random signs

censoring of X.

It would also be interesting to see whether the Wiener process model for PM can be

represented as a repair alert model. Recall that there are two conditions that X and Z

have to satisfy the requirements of a repair alert model. Condition (i) is the random signs

condition which is satisfied as already noted. Condition (ii) is equivalent to being able to

write the conditional density of Ts given Tc = tc on the form g(ts)
G(tc)

for some g(t) = G′(t).

Since f(ts|tc) = f(ts, tc)/f(tc), a necessary condition for (ii) is that the joint density f(ts, tc)

factorizes as h1(ts)h2(tc). Conditional on Ts = ts we have Tc = ts + IG(ν, c− s), so

f(ts, tc) = f(ts)f(tc|ts)

=
s(c− s)

2π
[ts(tc − ts)]

−3/2 exp

{

−(s− νts)
2

2ts

− [(c− s)− ν(tc − ts)]
2

2(tc − ts)

}

.

This does not factorize, however, which may be verified empirically by plotting.

The likelihood function

The contribution to the likelihood function when X = x is observed is the subdensity

function for X, f ∗

X(x). To find f ∗

X(x) we first calculate the subsurvival function and then

differentiate to get the subdensity function:

S∗

X(x) = P (X > x,X < Z)

= P (Tc > x)P (X < Z)

= (1− q)S(x; ν, c),
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which by (1) gives

f ∗

X(x) = (1− q)f(x; ν, c)

= (1− q)
c√
2π

x−3/2 exp

{

−(c− νx)2

2x

}

.

The contribution when Z = z is observed is the subdensity function f ∗

Z(z). The subsurvival

function for Z is found by

S∗

Z(z) = P (Z > z, Z < X)

= P (Z < X)P (Z > z|Z < X)

= qS(z; ν, s).

and hence the subdensity function for Z is given by

f ∗

Z(z) = qf(z; ν, s)

= q
s√
2π

z−3/2 exp

{

−(s− νz)2

2z

}

.

When we observe x1, ..., xm and z1, ..., zn the likelihood function is the product of all

these observations, i.e.

L =
m
∏

i=1

f ∗

X(xi)
n
∏

j=1

f ∗

Z(zj)

= (1− q)mqn
cmsn

(2π)
m+n

2

(

m
∏

i=1

xi

)

−3/2( n
∏

j=1

zj

)

−3/2

× exp

{

−
m
∑

i=1

(c− νxi)
2

2xi

−
n
∑

j=1

(s− νzj)
2

2zj

}

. (3)

Maximum likelihood estimates of the parameters q, c, s and ν can be found by com-

puting the log likelihood function, differentiating and solving the following likelihood equa-

tions,

mq − n(1− q) = 0, (4)

1

c
− c

1

m

m
∑

i=1

1

xi

+ ν = 0, (5)
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1

s
− s

1

n

n
∑

j=1

1

zj
+ ν = 0, (6)

cm+ sn = ν

(

m
∑

i=1

xi +
n
∑

j=1

zj

)

. (7)

This gives

q̂ =
n

n+m
,

while the estimates of c, s and ν are easily found by numerical methods.

Additional independent censoring

In practice there may be observations which are right censored by some independent source,

in which case neither X nor Z is observed, but rather a censoring time τ . Assume there-

fore that we observe x1, ..., xm and z1, ..., zn as above, but that for additional components

we observe just the censoring times τ1, ..., τr. The contribution to the likelihood from a

censored observation at τ is now

P (X > τ, Z > τ) = P (X > τ,X < Z) + P (Z > τ, Z < X)

= (1− q)S(τ ; ν, c) + qS(τ ; ν, s), (8)

The likelihood function L from (3) must therefore be multiplied by the contributions from

all censored observations,

Lτ =
r
∏

k=1

[(1− q)STc
(τk) + qSTs

(τk)] .
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The resulting log likelihood for data x1, ..., xm, z1, ..., zn, τ1, ..., τr now becomes

l = m ln(1− q) + n ln q − m+ n

2
ln 2π +m ln c

+ n ln s− 3

2

m
∑

i=1

lnxi −
3

2

n
∑

i=1

ln zi

−
m
∑

i=1

(c− νxi)
2

2xi

−
n
∑

j=1

(s− νzj)
2

2zj

+
r
∑

k=1

ln

[

(1− q)

(

Φ

(

c− ντk√
τk

)

− e2cνΦ

(−c− ντk√
τk

))

+ q

(

Φ

(

s− ντk√
τk

)

− e2sνΦ

(−s− ντk√
τk

))]

,

which by maximization gives the maximum likelihood estimates of the parameters. The

likelihood equations (4)-(7) are of course no longer valid, and numerical methods are now

needed even for the estimation of q.

6 Wiener process model with random level S

In the basic model presented in the previous section, the component is assumed to emit a

signal at a fixed level s, which is the same for all components. A way to extend this model

is to let the level s be a random variable, S. This means in effect that the components are

heterogeneous with respect to the signal level. For example, such a heterogeneity can be

explained by variations in maintenance policies. Note in the following that the potential

time Z to PM now is given by TS.

Now make the assumption that the random level S is independent of the Wiener pro-

cess. Since X as before is assumed to equal Tc for a fixed critical level c, it is clear that

the requirements of random signs censoring still hold. In fact, the event Z < X now

corresponds to S < c which is clearly independent of Tc.

It should be clear that the basic model of the previous section is actually a special case

of the model with random level S. In fact, for the basic model specified by a fixed signal
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Figure 3: Illustration of a Wiener process model with a random level S defined as the
left truncation at 0 of a normal random variable SN . The critical level c is fixed. Two
realizations, s1 and s2, of S are illustrated. In the case S = s1 we have that Z = Ts1 is
observed, while in the case S = s2 it is seen that X = Tc is observed.

level s and critical level c we may define a random variable S with two possible values, s

and v, say, such that P (S = s) = q and P (S = v) = 1− q and where v > c (see Figure 2).

For the general case, let FS(s) and fS(s) be the distribution function and density func-

tion of S, respectively. In order to make sense under an assumed positive trend parameter

ν we need to have P (S > 0) = 1 and P (S < c) > 0. Skogsrud (2005) suggested a trun-

cated normal distribution and a uniform distribution as useful distributions of S. Figure 3

illustrates the normal model.

The subdistribution function of X is now given by

S∗

X(x) = P (X > x,X < Z)

= P (Tc > x, S > c)

= P (Tc > x)P (S > c)

= (1− FS(c))S(x; ν, c).

Note that FS(c) = P (S ≤ c) corresponds to q = P (Z < X) from the basic Wiener model.
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The subdensity of X is found by differentiating S∗

X and is thus

f ∗

X(x) = (1− FS(c))f(x; ν, c).

The subsurvival and subdensity functions of Z are slightly more complicated than in

the basic Wiener case since TS and S now are stochastically dependent. More precisely we

obtain

S∗

Z(z) = P (Z > z, Z < X)

= P (TS > z, S < c)

=

∫ c

0

P (TS > z, s ≤ S ≤ s+ ds)

=

∫ c

0

P (Ts > z, s ≤ S ≤ s+ ds)

=

∫ c

0

P (Ts > z)P (s ≤ S ≤ s+ ds)

=

∫ c

0

S(z; ν, s)fS(s)ds.

and hence by differentiation,

f ∗

Z(z) =

∫ c

0

f(z; ν, s)fS(s)ds

=

∫ c

0

s√
2π

z−
3

2 exp

{

−(s− νz)2

2z

}

fS(s)ds. (9)

In order to write down the full likelihood function in the case of censored observations,

we also need the contribution of an observation censored at τ , which is

P (X > τ, Z > τ) = P (Tc > τ, TS > τ)

=

∫

∞

0

P (Tc > τ, TS > τ, s ≤ S ≤ s+ ds)

=

∫ c

0

P (Tc > τ, Ts > τ)fS(s)ds+

∫

∞

c

P (Tc > τ, Ts > τ)fS(s)ds

=

∫ c

0

P (Ts > τ)fS(s)ds+ P (Tc > τ)

∫

∞

c

fS(s)ds

=

∫ c

0

S(τ ; ν, s)fS(s)ds+ S(τ ; ν, c)(1− FS(c)). (10)
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Note that this generalizes the expression (8) for the basic model. In fact, the probability

FS(c) is then the same as q, while the integral
∫ c

0
S(τ ; ν, s)fS(s)ds reduces to qS(τ ; ν, s).

This finally leads to the following likelihood function for observations x1, ..., xm, z1, ..., zn

and τ1, ..., τr for the model with random level S and independent censoring:

L =
m
∏

i=1

f ∗

X(xi)
n
∏

j=1

f ∗

Z(zj)
r
∏

k=1

P (X > τk, Z > τk)

=
m
∏

i=1

(1− FS(c))
c√
2π

x
−

3

2

i exp

{

−(c− νxi)
2

2xi

} n
∏

j=1

f ∗

Z(zj)

×
r
∏

k=1

P (X > τk, Z > τk),

where the functions f ∗

Z(z) and P (X > τ, Z > τ) are given in (9) and (10), respectively.

Note that both these functions will depend on the distribution of S. Skogsrud (2005)

obtained explicit expressions for the likelihood when S is, respectively, truncated normal

and uniform on an interval [0, A].

7 Example: VHF-data

Mendenhall and Hader (1958) presented data of times to failure for ARC-1 VHF com-

munication transmitter-receivers of a single commercial airline. The times to failure were

actually times to removal of units that were assumed to be failed. After the removal, the

units were sent to maintenance and it turned out that some of the units were not failed

after all. Time to failure for the confirmed failures will here be represented by X, while

time to removal of the units with unconfirmed failures is represented by Z. In addition the

observations were censored at time τ = 630 hours because the airline removed every unit

which had been operated for that long. (This is a type I censoring). There are m = 218

observations of X, n = 107 observations of Z and r = 44 censored observations. In the

following these data will be referred to as the VHF-data.

Nonparametric estimates of S̃X(t) = 1 − F̃X(t) and S̃X(t) = 1 − F̃X(t) are given in

Figure 4, computed by means of formulas in Lawless (2003, Ch. 9.2). These indicate that
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the condition for random signs censoring, F̃X(t) < F̃Z(t), holds for these data at least for

t > 100, while the situation is not that clear for t < 100. Still we assume that a random

signs censoring model can be applied to the data.

Maximum likelihood estimates of the parameters ν, c, s and q for the basic Wiener

process model are displayed in Table 1, which also gives approximate 95% confidence

intervals for each parameter.

Table 1: Table of maximum likelihood estimates of the parameters ν, c, s and q for the
VHF-data in the basic Wiener process model with censoring. In addition the standard
deviation and 95% confidence intervals are included using standard normal theory.

Parameter Estimate St deviation Lower bound Upper bound
ν 0.03412 0.003838 0.02737 0.04254
c 12.64 0.5780 11.56 13.83
s 10.64 0.6762 9.392 12.05
q 0.3230 0.02592 0.2760 0.3780

When we assume the normal random level model, the parameters are estimated as

shown in Table 2. The estimated drift ν is close to the one estimated in the basic model,

but slightly higher. This is apparently compensated in the estimated critical level c, which

also lies a bit above the estimate from the previous model.

Table 2: Table of maximum likelihood estimates of the parameters ν, c, µS and σS for
the VHF-data in the Wiener process model with random S given by a truncated normal
distribution with mean µS and variancve σ2

S. In addition the standard deviation and 95%
confidence intervals are included using standard normal theory.

Parameter Estimate Standard deviation Lower bound Upper bound
ν 0.03629 0.003927 0.02935 0.04486
c 13.26 0.5744 12.18 14.43
µS 14.87 0.8605 13.28 16.66
σS 3.489 0.7143 2.336 5.212

We can estimate the probability of observing Z in the normal model by

q̂ = P̂ (Z < X) = P̂ (S < c) = Φ

(

ĉ− µ̂S

σ̂S

)

= Φ(−0.4615) = 0.3222.

16



0 100 200 300 400 500 600

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

t

S
j(t

)

Figure 4: Parametric estimated conditional survival functions ˆ̃SX(t) (thin dashed line)

and ˆ̃SZ(t) (thick dashed line) for the basic models in the VHF-data. Plotted with the
non-parametric estimates of S̃X(t) (thin line) and S̃Z(t) (thick line).
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Figure 5: Parametric estimated conditional survival functions ˆ̃SX(t) (thin dashed line) and
ˆ̃SZ(t) (thick dashed line) for the normal random level model with the VHF-data. Plotted
with the non-parametric estimates of S̃X(t) (thin line) and S̃Z(t) (thick line).
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which is very close to the result of the basic model.

The parametric estimates of S̃X(t) and S̃Z(t) for the two models are plotted in Figure

4 and Figure 5, respectively. The fits appear to be not much different for the two models,

and both are somewhat unsatisfactory, except for t large (t > 400). A slight difference

in favor of the normal random level model is indicated by looking at the maximum log

likelihood values of the two models. These are -2406.3 for the basic model and -2401.9 for

the normal random level model. The conclusion from this higher number for the normal

random model is not clear, however, since the models are not nested but have the same

number of parameters.

The reason for the unsatisfactory fit, as discussed above, is presumably that the inverse

Gaussian distribution is not a good model for the failure times X. For comparison, we

plotted also, in Figure 6, the corresponding parametrically estimated curves for the repair

alert model presented in Section 3. Analysis of the VHF-data by means of an exponential

repair alert model is performed in Lindqvist et al. (2006), with X being exponentially

distributed with hazard rate λ and the cumulative repair alert function given by G(t) = tβ.

Maximum likelihood estimates of λ and β were calculated to be λ̂ = 3.10 · 10−3 and

β̂ = 4.44, while q was estimated as 0.318. The fit to the data seems to be much better for

this model as seen from Figure 6.

8 Concluding remarks

The non-identifiability of marginal distributions is well known in competing risks situations

and the issue is well described, for example, in the book by Crowder (2001). The problem

is apparent in reliability analyses, since the estimation of marginal failure distributions

is of primary importance there. Random signs censoring is an interesting option in such

studies, but like all other approaches this is again based on non-testable assumptions.

Instead of the Wiener process models studied in the present paper, we may use other

types of processes, for example gamma processes. An intuitive advantage of the latter
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Figure 6: Parametric estimated conditional survival functions ˆ̃SX(t) (thin dashed line) and
ˆ̃SX(t) (thick dashed line) for the repair alert model with fX(x) = λe−λx and G(t) = tβ

applied on the VHF-data (Lindqvist and Langseth, 2005). Plotted with the non-parametric
estimates of S̃X(t) (thin line) and S̃Z(t) (thick line)
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processes is that they are strictly increasing, which seems more reasonable for a degradation

process.

Skogsrud (2005) considered the extension of the Wiener process model presented here,

obtained by letting the level s of PM be a random variable. The models can also be

extended to include the possibility of covariates. This can be done in a way similar to the

one described by Aalen and Gjessing (2001). For example, we could let the level c of failure

depend on the covariates. Also, we could let covariates influence the drift parameter ν.
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