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We review and complement a general approach for Monte Carlo
computations of conditional expectations given a sufficient statistic.
The problem of direct sampling from the conditional distribution is
considered in particular. This can be done by a simple parameter
adjustment of the original statistical model if certain conditions are
satisfied, but in general one needs to use a weighted sampling scheme.
Several examples are given in order to demonstrate how the general
method can be used under different distributions and observation
plans. In particular we consider cases with, respectively, truncated
and type I censored samples from the exponential distribution, and
also conditional sampling for the inverse Gaussian distribution. Some
new theoretical results are presented.

1. Introduction. We consider a pair (X,T") of random vectors with
joint distribution indexed by a parameter vector #. Throughout the paper
we assume that T is sufficient for 8 compared to X, meaning that the con-
ditional distribution of X given T = t can be specified independent of 6
[Bickel and Doksum (2001), Ch. 1.5, Lehmann and Casella (1998), Ch. 1.6].
Statistical inference is often concerned with conditional expectations of the
form E{¢(X)|T = t}, which will hence not depend on the value of 6. Ap-
plications include construction of optimal estimators, nuisance parameter
elimination and goodness-of-fit testing.

Only in exceptional cases is one able to compute E{¢(X)|T =t} analyt-
ically. Typically this is not possible, thus leading to the need for approxi-
mations or simulation algorithms. Apparently because of the computational
difficulties involved, methods based on conditional distributions given suffi-
cient statistics are often not exploited in statistical applications. In fact, the
literature is scarce even for the normal and multinormal distributions. Cheng
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(1984) used a result for Gamma-distributions to simulate conditional nor-
mal samples with given sample mean and sample variance, and then showed
how to modify the idea to sample conditionally given the sufficient statis-
tic for the inverse Gaussian distribution. Subsequently he extended the idea
from his 1984 paper to derive a corresponding algorithm for the multivariate
normal case [Cheng (1985)]. A related approach based on random rotations
was recently suggested by Langsrud (2005). LT (2005) derived a method for
the multinormal distribution that satisfies the pivotal condition and is based
on a parametrization via Cholesky-decompositions. Diaconis and Sturmfels
(1998) derived algorithms for sampling from discrete exponential families
conditional on a sufficient statistic.

Engen and Lillegard (1997) considered the general problem of Monte
Carlo computation of conditional expectations given a sufficient statistic.
Their ideas were further developed and generalized in Lindqvist and Tarald-
sen (2005) [in the following referred to as LT (2005)] and in the technical
report Lindqvist and Taraldsen (2001) where a more detailed measure the-
oretic approach was employed.

The present paper reviews basic ideas and results from LT (2005). The
main purpose is to complement LT (2005) regarding computational aspects,
examples and theoretical results. In particular we consider some new exam-
ples from lifetime data analysis with connections to work by Kjell Doksum
[Bickel and Doksum (1969), exponential distributions; Doksum and Hgyland
(1992), inverse Gaussian distributions].

2. Setup and basic algorithm. Following LT (2005) we assume that
there is given a random vector U with a known distribution, such that (X, T)
for given € can be simulated by means of U. More precisely we assume the
existence of functions x and 7 such that, for each 6, the joint distribution of
(x(U,0),7(U,0)) equals the joint distribution of (X,7T") under 6. Let in the
following f(u) be the probability density of U.

EXAMPLE 1 (Ezponential distribution). Suppose X = (Xq,...,X,,) are
i.i.d. from the exponential distribution with hazard rate 6, denoted Exp(6).
Then T' = >, X, is sufficient for 6. Letting U = (Uy,...,U,) be ii.d.
Exp(1) variables we can put

X(U,G) = (U1/9,...,Un/9),
TU,0) = > U/6.
i=1
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CONDITIONAL MONTE CARLO 3

Consider again the general case and suppose that a sample from the con-
ditional distribution of X given T' = t is wanted. Since the conditional
distribution by sufficiency does not depend on 6, it is reasonable to believe
that it can be described in some simple way in terms of the distribution
of U, and thus enabling Monte Carlo simulation based on U. A suggestive
method for this would be to first draw U from its known distribution, then
to determine a parameter value 6 such that 7(U, é) =t and finally to use
X,(U) = x(U,8) as the desired sample. In this way we indeed get a sample
of X with the corresponding T having the correct value ¢t. The question
remains, however, whether or not X;(U) is a sample from the conditional
distribution of X given T = ¢.

EXAMPLE 1 (continued). For given ¢ and U there is a unique 0 = (U, )
with 7(U, 0) = t, namely

b, 1) = 2= Ui,
t
This leads to the sample
- tUy tU,
2.1 X (U)=x{U,0(U,t)} =
Q1 X) = U0} = ()

and it is well known [Aitchison (1963)] that the distribution of X;(U) indeed
coincides with the conditional distribution of X given T = ¢.

The algorithm used in Example 1 can more generally be described as
follows:

ALGORITHM 1. Conditional sampling of X given T = t.

1. Generate U from the density f(u). R
2. Solve 7(U,¢) =t for . The (unique) solution is (U, ).
3. Return X((U) = x{U,6(U,t)}.

The following so called pivotal condition, discussed and verified in LT
(2005), ensures that Algorithm 1 produces a sample X;(U) from the condi-
tional distribution of X given T = t. Note that uniqueness of é(U ,t) in Step
2 is required.

The pivotal condition. Assume that 7(u, ) depends on u only through a
function 7(u), where the value of r(u) can be uniquely recovered from the
equation 7(u,f) =t for given 0 and t. This means that there is a function
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4 B. H. LINDQVIST AND G. TARALDSEN

7 such that 7(u,0) = 7{r(u),0} for all (u,0), and a function ¢ such that
7{r(u),0} = t implies r(u) = v(0, t). Note that in this case 0(0,T) is a pivotal
quantity in the classical meaning that its distribution does not depend on 6.

EXAMPLE 1 (continued). The pivotal condition is satisfied here with
r(U) = Yi U;. Thus Algorithm 1 is valid, as verified earlier by a direct
method.

3. General algorithm for unique é(u, t). Algorithm 1 will in gen-
eral not produce samples from the correct conditional distribution, even if
the solution 0 (u, t) of 7(u, #) = t is unique. This was demonstrated by a coun-
terexample in Lindqvist, Taraldsen, Lillegard and Engen (2003). A modified
algorithm can, however, be constructed. The main idea [LT (2005)] is to
consider the parameter § as a random variable ©, independent of U, and
with some conveniently chosen distribution 7. Such an approach is similar
to the one of Trotter and Tukey (1956), and this idea is also inherent in the
approach of Engen and Lillegard (1997).

The key result is that the conditional distribution of X given T' = t equals
the conditional distribution of x (U, ©) given 7(U, ®) = t. This is intuitively
obvious from the definition of sufficiency, which implies that this holds when
© is replaced by any fixed value 6. Note, however, that independence of U
and © is needed for this to hold. It follows that conditional expectations
E{¢(X)|T =t} can be computed from the formula

(3.1) E{o(X)|T = t} = E[¢{x(U, ©)}|7(U,©) = 1].

Assume in the rest of the section that the equation 7(u,0) = ¢ has the
unique solution 0(u, t) for §. Then 0 = 0{u, 7(u, )} is an identity in 0 and u,
and this fact together with (3.1) imply that

E{o(X)IT =t} = El¢{x(U,0)}I7(U,0) =1]
= Blo{x(U,0(U,7(U,0))}I7(U,0) = 1]
= Elp{x(U,0(U,1)}|7(U,0) = 1].

Thus we need only the conditional distribution of U given 7(U,©) = t.
Assuming this is given by a density f(u|t), Bayes’ formula implies that
f(ult) o< f(t|u)f(u), where f(t|u) is the conditional density of 7(U, ©) given
U = w and f(u) is the density of U. Now since U and © are independent,
f(t|u) is simply the density of 7(u,®) which we in the following denote by
Wi(u). It should be stressed that W (u) is the density of 7(u, ©) as a function
of t, for each fixed u, while in the following it will usually be considered as
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a function of u. From this we get

(3.2 BloColT = 1) = FATH

where the denominator E{W;(U)} = [ Wi(u)f(u)du is merely the normal-
ization of the conditional density f(u|t). The formula shows that Wy(u) acts
as a weight function for a sample u from f(u).

It follows from (3.2) that sampling from the conditional distribution in
principle can be done by the following scheme:

ALGORITHM 2. Weighted conditional sampling of X given T =t.
Let © be a random variable and let ¢t — W;(u) be the density of 7(u, ©).

1. Generate V from a density proportional to W (u) f(u).
2. Solve 7(V,0) =t for 0. The (unique) solution is 6(V,1).
3. Return X¢(V) = x{V,0(V,1)}.

The weight function Wi(u) in the Fuclidean case. Suppose that the vec-
tor X has a distribution depending on a k-dimensional parameter 6 and
that T'(X) is a k-dimensional sufficient statistic. Choose a density m(6) for
© and let Wi(u) be the density of 7(u,©). Since 7(u, ) = t if and only if
0 = 0(u, t) it follows under standard assumptions that

()

(3.3) Wi(u) = m{0(u, t)}| det 8,0(u, t)| = ’mb:é(u,t)'

The formula can thus be written

J ¢lx{u, b(u, t)}]\ﬁ%bzéw@f(u)du

f|det897(u9 lo=a ut)f(“)d“

34)  E{o(X)|T =t} =

)

and can be computed by simulation using a pseudo-sample from the distri-
bution of U as will be explained in Section

EXAMPLE 2 ( Truncated exponential lifetimes). Let X = (X1,...,X,) be
a sample from the exponential distribution with hazard rate 6, but assume
now that X; is an observation truncated at 7; (i = 1,...,n), where the 7, > 0
are known numbers. This means that the distribution function of X; is

1 _ 6—9271'

(3.5) Fi(i,0) = 1— =57,

5 0 < $if§7],i ::1,...,n
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6 B. H. LINDQVIST AND G. TARALDSEN

As for the non-truncated exponential case in Example 1, the statistic T' =
Yo X is sufficient for 6. Suppose we wish to consider the conditional
distribution of X given T' = t. It turns out to be convenient to extend the
parameter set to allow 6 to be any real number. Indeed, F; defined in
is a c.d.f. for all real 0 if we define Fj(z;,0) = z;/7, 0 < z; < 7, obtained
by taking the limit as # — 0 in (3.5).

Now a sample X can be simulated by ordinary inversion based on (3.5)
using a sample U = (U, Us, . .., Uy,) from the standard uniform distribution,
denoted Un[0, 1]. This gives
x(U,0) = (m(U1,0),...,0,(Un,0)), 7(U,0) = > 1 ni(U;, 6) where

o) —log{l = (1 —e ")}/ if 6 #£0
m(ul’e) o { T; Uq if0=0

The function n;(u;, #) is strictly decreasing in 6, which follows since F;(z;,0)
is strictly increasing in 6. Consequently the solution 6(u,t) of 7(u,0) =t is
unique.

It turns out that the pivotal condition of Section 2 is not satisfied in the
present case. Indeed, Lindqvist et al. (2003) studied the case n = 2 and found
that Algorithm 1 does not produce the correct distribution. Thus we use in-
stead Algorithm 2 and (3.4), for which we need to compute |9p7(u, 6)

’9:é(u,t) :
We obtain

1 n Tiuie—G(u,t)Ti
1067 (1, 0)lg_j0) = Awt) (t - ; 1—(1— eé(u,t)n)ui> '

In principle we can then use with any choice of the density 7(6) for
which the integrals exist. The simple choice of 7(6) = 1/|6| turns out to work
well in this example and is in accordance with the discussion in Section 6.3
regarding the use of noninformative priors.

We close the example by noting that since § = 0 corresponds to the X;
being uniform, the target conditional distribution is that of n independent
Un[0, 7;] random variables given their sum. There seems to be no simple
expression for this distribution, not even when the 7; are equal.

4. The general case. Recall the basic idea described in Section [3|that
conditional expectations E{¢(X)|T = t} can be computed from the formula
(3.1) where we have introduced the random parameter ©. In the general
case, where there may not be a unique solution of 7(u, ) = ¢, we compute
(3.1) by conditioning on U in addition to 7(U, ©) = t. This leads to the most
general result of LT (2005) which states that

(4.1) E{p(X)|T =t} = J Zj(&%‘?it)?&ﬁ(;{idu)
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CONDITIONAL MONTE CARLO 7

where Z;(u) is the conditional expectation of ¢{x(u,®)} given 7(u,0) =1t
for fixed u, Wi(u) is the density of the variable 7(u, ©) at ¢, for fixed u, and
f(u) is the density of U.

Thus our method essentially amounts to changing computations of condi-
tional expectations of ¢{x(U, 8)} given 7(U,0) =t for fixed 6 into the often
much simpler problem of computing conditional expectations of ¢{x(u,©)}
given 7(u,®) =t for fixed u. Note the freedom to choose a suitable distri-
bution 7 for ©.

The formula implies the following principal scheme for simulation of
X given T' = t.

ALGORITHM 3. General weighted conditional sampling of X given T = t.
Let © be a random variable and let ¢ — W;(u) be the density of 7(u, ©).

1. Generate V from a density proportional to W;(u) f(u) and let the result
be V =w.

2. Generate O; from the conditional distribution of © given 7(v,0) = t.

3. Return X;(V) = x(V,0y).

4.1. The general Euclidean case. As in Section I3, suppose that the vec-
tor X has a distribution depending on a k-dimensional parameter 6 and
that T'(X) is a k-dimensional sufficient statistic. In this case, the equation
7(u, 0) = t will typically have a finite number of solutions, where this number
may vary as u varies. Define

D(u,t) ={0: 7(u,0) =t}
and note that the density ¢ — W;(u) of 7(u, ®) is now given by

m(0)
| det OpT (u, 0)|0:é'

(4.2) Wiw) = Y

fel (u,t)

Furthermore, the conditional distribution of © given 7(u,®) =t is concen-
trated on I'(u,t) and is given by

7(6)

(43)  Pr{®=0]7(u,0) =1} = | det Dpr(u, 0)|y_sWi(u)’

0 € T(u,t).

The following formula generalizes the result (3.4):

) (0
J Zéer(u,t) o (x(u, 9))mﬂu)du

(44)  E{o(X)T =t} =

(0
J Zberqu mﬂu)du

imsart-aop ver. 2004/12/29 file: LindTarFestschrift.Revision.tex date: March 13, 2006



8 B. H. LINDQVIST AND G. TARALDSEN

We note that the treatment of multiple roots of the equation 7(u,0) =t
in the present context is similar to the treatment in Michael et al. (1976) in
connection with generation of random variates from transformations with
multiple roots. Formulas and can in fact together be considered
as a multivariate generalization of equation 3 in Michael et al. (1976) [see
also Taraldsen and Lindqvist (2005)].

The following two examples illustrate the use of Algorithm 3 and equation
(4.4). In the first example I'(u, ) contains at most one value of 6, but may be
empty. In the second example we may have an arbitrary number of elements
in I'(u,t).

EXAMPLE 3 (Type I censored exponential lifetimes). Let n units with po-
tential lifetimes Y7, Ya, ..., Y, be observed from time 0, but assume that the
observation of the ith unit is censored at a given time ¢; >0 (i =1,...,n).
This means that we observe only X; = min(Y}, ¢;). In the reliability terminol-
ogy this is called Type I censoring. Suppose Y1, ...,Y, arei.i.d. with distribu-
tion Exp(#). Then the likelihood of X1, ..., X, can be written 6% exp(—69)
where R = Y, I(X; < ¢;) is the number of noncensored observations and
S =Y, X; is the sum of all observations. Here I(A) is the indicator func-
tion of the event A. Now T' = (R, S) is sufficient for #, but note that a
two-dimensional statistic is here sufficient for a one-dimensional parameter.

It should be remarked that the potential censoring times c; are assumed
known also for the units where X; < ¢;. For example this is the case if n
machines, or patients in a medical study, are observed from possibly different
starting points in time, and until a common terminal point. Let c1,...,c,
be fixed, known numbers in the following.

As in Example 1, let U = (Uy,...,U,) be a vector of n ii.d. Exp(1)
variables. We then simulate X for a given value of # by means of x(U,0) =
(771(U1, 9)7 tet 777n(Un7 9)) where

ni(ui, 0) = min(u;/0,¢;), i =1,...,n.

Thus T = (R, S) is simulated by 7(U, 0) = (v(U, 0),v(U, 0)) where v(U, 0) =
> 1(Ui/0 < ¢;) and ¥(U,0) = 32, mi(Us, 0).

We now show how to find the functions W;(u) and Z;(u) needed in (4.1).
First we show that the equation 7(u,#) = ¢ has at most one solution for ¢
for fixed u,t, but may have none. Let the observed value of the sufficient
statistic, t = (r,s), be fixed with 0 < r <mn, 0 < s < Y_; ¢;. Then consider
the equations y(u,8) = r, ¥(u,0) = s for a given u. Since ¥ (u, ) is strictly
decreasing in 6, from ", ¢; to 0, there is a unique 6 which satisfies Y (u, é) =
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CONDITIONAL MONTE CARLO 9

s. However, this 6 may not solve y(u,0) = r. In the cases where indeed
Y(u,0) = r, put K(u,t) =1 and put K(u,t) = 0 otherwise. If K(u,?) =1
then define I(u,t) = {i1,...,i,} to be the set of indices i for which u; /0 < ¢;.
With this notation we can express the solution § when K(u,t) =1 as
2iel(ut) Wi

O(u,t) = —=Ewb &
(1) $ = DligI(uy) Ci

Next, choose a density w(6) for # > 0, for example 7(f) = 1/ in ac-
cordance with Example 2. We then find the density Wi(u) = W, 4 (u) of
7(u, ©) to be

Wi(u)ds = w{0:v(u,0)=r,s <¢(u,0) <s+ds}

0 if K(u,t)
O(u, t)°m(O(u,0))ds/ Sierpup ui i K (u,t)

0
1.

Further, Z;(u) is the conditional expectation of ¢{x(u, ©)} given 7(u, ©) =
t. This is easily found since the conditional distribution of © given 7(u,®) =
t is a one-point mass at 0(u,t) if K(u,t) = 1 and can be arbitrarily chosen
otherwise. Formula (4.4)) therefore gives

— E{K(U7 t)¢[X{U7 é(Uv t)}]Wt(U)} )

E{¢(X)|T =t} E{K(U,t)W,(U)}

The choice 7(6) = 1/0 yields the simple weight function

(4.5) Wi(u) = (s — Z ci)_l,
11 (u,t)
valid when K (u,t) = 1.

An important special case is when the ¢; are all equal. In this case Wy (u) in
does not depend on u and we can sample directly from the conditional
distribution of X given T' = ¢ for fixed ¢ by drawing v until K (u,t) = 1 and
then using X;(u) = x{u, 0(u,t)}.

EXAMPLE 4 (Inverse Gaussian distributed lifetimes). Let X = (X1,...,X,)
be a sample from the inverse Gaussian distribution with density

(4.6) flzsp, d) =

pp e )
_Re 9T 0
23 xp( 2x 2u+¢ ) &2
[Seshadri (1999), p. 2] where p, ¢ > 0 are parameters. Denote this distribu-

tion by IG(u, ¢). Note that a more common parametrization uses p together
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10 B. H. LINDQVIST AND G. TARALDSEN

with A = p¢, but the one used in (4.6) is more convenient for our purposes
as will become clear below. Doksum and Hgyland (1992) considered mod-
els for accelerated life testing experiments which were based on the inverse
Gaussian distribution. In the present example we shall consider conditional
sampling given the sufficient statistic, which may have several interesting
applications in this connection.

A sufficient statistic is given by [Seshadri (1999), p. 7]

T = (T1,Ty) = (ZXZ,ZI/X>

Since 1 is a scale parameter in (4.6) we can simulate from IG(u, ¢) by first
simulating from IG(1, ¢) and then multiplying the result by p. We shall use
the method suggested by Michael et al. (1976) which seems to be easier than
ordinary inversion since there is no closed form expression for the inverse
cumulative distribution function.

Let U; be Un[0,1] and V; be x? for i = 1,...,n, where all variables are
independent. Here x? means the chi-square distribution with 1 degree of

freedom. Let
Wi = 1= o)t (V7 v aon-vi).

Zi = (1+wy)™!
Then [Michael et al. (1976)] the variables
n(Ui, Vi, ) = I(U; < Z;)) Wi + I(U; > Z;) (1/W;)
are distributed as IG(1, ¢) and hence

XUV, p, @) = (un(Ur, Vi, @), .o, (U, Vs @)

is a simulated sample of size n from 1G(u, ¢). Here U = (Uy,...,U,), V =
(Vi,..., V). Moreover, we simulate T' = (11, T%) by

T(Ua V,/.L, ¢) = (Tl(Uv Vvlua ¢)77_2(U V 12 ¢))

= <Zun(Ui,Vi,¢ ,Z 1/p)(1/n( Ul,%,gb))) .
i=1

=1

In order to compute conditional expectations or to sample from the con-
ditional distribution of X given T" = t we need to solve the equations
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CONDITIONAL MONTE CARLO 11

T(u,v, 1, ) = t = (t1,t2) with respect to u and ¢. This can be done by
first solving the equation

(47) Tl(u,’U,,LL, ¢) 'TZ(uaUaM7¢) = t1to,

which is free of p. It turns out that the solution for ¢ is not necessarily
unique. In fact, the number of roots is finite but may vary with (u,v). How-
ever, for each root found for ¢ we can easily solve for p using 71 (u, v, p, ¢) =
t1. It should be noted that the functions n(u;,v;, ¢) are discontinuous in
¢ due to the indicator functions involved in their definition. However, the
discontinuities are easy to calculate, and the functions behave smoothly as
functions of ¢ between them. This simplifies the solution of the equation
(4.7) and enables rather straightforward computation of Wy(u) in (4.2). A
possible choice of the density = is to put m(u, @) = 1/(u¢) since Jeffreys’
priors for, respectively, known ¢ and known p are 1/ and 1/¢ (see Sec-
tion 6.3 for the use of Jeffreys’ priors in the present context). The desired
simulations and computations can thus be performed by the methods of the
present section.

As mentioned in the introduction, Cheng (1984) presented a method for
simulation of conditional distributions in the case of inverse Gaussian dis-
tributed samples. His method is based on a subtle decomposition of chi-
squared random variates and appears to be somewhat simpler than the
method presented here.

4.2. The discrete case. Suppose that both X and T have discrete dis-
tributions, while the parameter space is a subset of the k-dimensional Eu-
clidean space. In this case the sets I'(u,t) are usually sets with positive
Lebesgue measure. These may in many cases be found explicitly, so that
Wi(u) = Pr{r(u,©) = t} can be computed directly. In some instances,
however, the set I'(u,t) is difficult to find. For such cases Engen and Lil-
legard (1997) suggest replacing 7 by a discrete measure, such as the counting
measure on a grid of points in the parameter space.

A thorough treatment of the discrete case is given in LT (2005), including
an example with logistic regression.

5. On the distribution of §(U,t). Consider again the case when
7(u, #) = t has the unique solution (u, t). For computational reasons it may
be desirable to have some knowledge of the probability distribution of é(U ,1)
as a function of U.

Note first that for the case when 6 is one-dimensional and 7T is stochas-
tically increasing in 0, Lillegard and Engen (1999) used the variates 6(U, t)
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12 B. H. LINDQVIST AND G. TARALDSEN

to derive exact confidence intervals for . More precisely they showed that
one obtains an exact (1 — 2k/(m + 1))-confidence interval for § by sampling
m + 1 values of é(U, t) and then using the interval from the kth smallest
to the kth largest of them. They called this method conditional parametric
bootstrapping. Their result can be rephrased to say that the interval be-
tween the /2 and 1 — /2 percentiles of the distribution of §(U,t) is an
exact 1 — o confidence interval for 6. In fact, the distribution of 6(U,t) is
in this case a fiducial distribution in the sense of Fisher [Wilks (1962), p.
370]. This suggests that, under given standard conditions, the distribution
of é(U, t) should at least asymptotically be comparable to that of a decent
estimator of 6, for example the maximum likelihood estimator.

This turns in fact out to be true under reasonable conditions. A rough ar-
gument for the extended case where # and T are k-dimensional can be given
as follows. Suppose that we have U = (Uy,Us,...,U,) where we shall con-
sider the case where n — co. Furthermore, assume that the parametrization
is such that § = E{T} = E{7(U,0)}. Lehmann and Casella (1998, p. 116)
calls this the mean value parametrization. In this case T is itself an unbiased
estimator of #, and is the maximum likelihood estimator if the underlying
model is an exponential family [Lehmann and Casella (1998), p. 470]. Our
basic assumption for the following derivation is that

n'2(7(U,0) — 6) % Ny(0,%(0))

as n — oo for some positive definite matrix 3(6). This is satisfied in the
exponential family case, where 3(0) is the inverse Fisher information matrix.

Now we consider a fixed value of ¢ and define §(U,t) to be the unique
solution of 7(U, §) = t. Assume furthermore that we can show that 6(U, ) —
t in probability as n — oo. In this case, for any U,

t = 7(U,0U,1L)
= 7(U,t) + 997(U,0)|,_(0(U, 1) — 1),

where 6 is between é(U ,t) and t in the sense that each component of 0 is a
convex combination of the corresponding components of §(U,t) and ¢.
Hence

n'2(0(U,t) - t) = (8e7(U,0)|p_p) 0" *(t — 7(U, 1))
and provided 9p7(U,0)|,_; L I (where T is the identity matrix) we have

(5.1) n2(0(U,t) — t) — Ni(0,5(t))
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The requirement that dy7(U,0)|,_s L. T is typical in asymptotic results
related to estimating equations, see for example Welsh (1996, Section 4.2.4)
and Sgrensen (1999) for sufficient conditions. The reason for the limit I
above is that E{7(U,0)} = 6. We will not pursue this further here, since the
methods we derive are meant for use in non-asymptotic inference.

The conclusion is that for a large class of models 9(U, t) has the same
asymptotic distribution as 7" under the parameter value § = t. Thus in
multiparameter exponential models we conclude that é(U, t) (under given
conditions) has the same asymptotic distribution as the maximum likeli-
hood estimator for 6. Note that by the invariance property of the maximum
likelihood estimator and of A(U,t) (see Section [6.3) this holds under any
parametrization.

Finally we can reinterpret our result (5.1) to say that conditionally on
T, n'/2{0(U,T) — T} has the same limiting distribution as n'/2(T" — 6).
This result is analogous to asymptotic results for bootstrapping (Bickel and
Freedman, 1981), in which the é(U, T') are replaced by bootstrapped statis-
tics.

6. Computational aspects.

6.1. Monte Carlo computation of conditional expectations. A basic idea
of our approach is that expectations of functions of U, such as (3.4) and
(4.4), can be evaluated by Monte Carlo simulation. Basically, we can esti-
mate E{h(U)} by (1/m)>"", h(u;) where uq,...,u, is a computer gen-
erated pseudo sample from the distribution of U. The literature on Monte
Carlo simulation [for example Ripley (1987)] contains various methods for
improving on this naive approach of estimating E{h(U)}.

6.2. Choice of simulation method for (X,T). Our approach relies on the
functions (x(U,0),7(U,0)) chosen for simulation of (X,7T) in the original
model. There is usually no unique way of selecting a simulation method.
In the simulation of inverse Gaussian variables in Example |4/ it would be
possible, for example, to use ordinary inversion based on the cumulative
distribution function, or even to use simulation of Wiener processes as de-
scribed in Chhikara and Folks (1989). Each simulation scheme would give a
different solution technique for handling the conditional distributions.

6.3. Choice of the density w. Jeffreys’ prior. For a given setup in terms
of (x(U,8),7(U,0)) we need to specify a density m(6), except when condi-
tions for using Algorithm 1 are fulfilled. In practice the effectiveness of an
algorithm is connected to variation in the W;(u) which should be small or at
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best absent. For example, in order to minimize this variation in the case of
formula (3.4), the density 7(6) should be chosen so that w{f(u, )} is similar
to |detOpT(u, 9)\9:9(%0.

Under the pivotal condition (Section 2) we may always choose 7 so that
Wi(u) does not depend on u. As a simple illustration, consider the simple
pivotal case where 6 is one-dimensional and 7(u,6) = r(u)f. This means
that 7'/0 is a pivotal quantity. Assume that the parametrization is such
that E{r(U)} = 1 so that we have the mean value parametrization. In
this case 0(u,t) = t/r(u) so &,0(u,t) = 1/r(u) = O(u,t)/t. Hence we get
Wi(u) in (3.3) constant in uw by choosing m(f) = 1/6. Assuming that 7" is
the maximum likelihood estimator of 6 then under regularity conditions the
Fisher-information is given by 1/Var{r(U,0)} x 1/6% so 1/0 is Jeffreys’
prior here. As another illustration it is shown in LT (2005) that in the case
where X is a sample from N(u,0) we obtain constant W;(u) by choosing
m(pu,0) = 1/0, which is the standard improper, noninformative prior for this
case.

In fact there are reasons to choose improper, noninformative priors, such
as Jeffreys’ prior, also in general for the distribution 7. Consider in particular
a one-to-one reparametrization from a k-dimensional parameter 6 to the k-
dimensional ¢ defined by 6 = h(§). We then define 74 (u,&) = 7(u,h(§))
from which it follows that the &(u,t) which solves the equation 7, (u, &) =t
satisfies O(u,t) = h{€(u,t)}. Now let J be the k x k-matrix with elements
Jij = 0hi(§)/0€;. Then we can write as

Wi(u) = 7[h{€(u, t)}] |det.] detd;é(u,t)].

This shows that if we change the parametrization, then the weights W (u)
are unchanged provided we change 7 by the ordinary change of variable for-
mula for densities. Thus a consistent principle for choosing 7 should have
this property of invariance under reparametrizations. It is well known that
Jeffreys’ prior (Jeffreys, 1946) has this property, and there seems to be rea-
sons why in fact Jeffreys’ prior distribution is a reasonable candidate for
general use.

6.4. Direct sampling from the conditional distributions. Algorithm 1 de-
scribes how to sample from the conditional distribution of X given T =t
under special conditions. Sampling from the conditional distribution using
Algorithms 2 or 3 may, however, in general be difficult since the normalizing
constant of the density W;(u)f(u) may not be easily available. Rejection
sampling can be used if we are able to bound W;(u) from above. Looking at
we find that a possible way of doing this is to seek a positive function

imsart-aop ver. 2004/12/29 file: LindTarFestschrift.Revision.tex date: March 13, 2006



CONDITIONAL MONTE CARLO 15

p(0) such that for all u we have
| det D7 (1, 0)|g_g gy = PLO(us )}

In this case we can put 7(0) = p(€) to get Wi(u) <1 for all u. Then we may
simulate V' in Step 1 by first drawing a U = u and then accepting it with
probability Wy (u).

A possible method for sampling without bounding Wi (u) is by means of
the SIR-algorithm of Rubin (1988). In the case of Algorithm 2 this method
can be described as follows:

First sample u1, ..., u,, independently from the density f(u). Then define
w; = Wi(u;) for ¢ = 1,...,m and let F,, denote the discrete probability
measure which assigns probability w;/ > " ; wy to w;. Then F,, converges
to the desired conditional distribution as m — oo. Hence for m large enough
we can obtain independent samples in Step 1 of Algorithms 2 and 3 by
sampling from F},.

Samples in Step 1 of Algorithms 2 and 3 can also be obtained by us-
ing the independence sampler based on the Metropolis-Hastings algorithm
[Tierney (1994)], but this leads to dependent samples from the conditional
distribution.
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