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CHAPTER 1
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N-7491 Trondheim, Norway
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Consider the competing risks situation for a component which may be
subject to either a failure or a preventive maintenance action, where the
latter will prevent the failure. It is then reasonable to expect a depen-
dence between the failure mechanism and the PM regime. The chapter
reconsiders the so called repair alert model which is constructed for han-
dling such cases. A main ingredient here is the repair alert function
which characterizes the “alertness” of the maintenance crew. The main
emphasis of the chapter is on statistical inference for the model, based
on possibly right censored data. Both nonparametric and parametric
inference is studied. The methods are applied to two different data sets.

1. Introduction

We consider the competing risks situation occurring when a potential com-

ponent failure at some time X may be avoided by a preventive mainte-

nance (PM) at time Z. The experienced event will in this case be at time

Y = min(X,Z), and it will either be a failure or a PM. It is convenient

to use the notation δ = I(Z < X) to denote the type of event, where

I(A) is the indicator function of the event A. Thus δ = 0 means that the

component fails and δ = 1 means that it is preventively maintained.

The observable result is now the pair (Y, δ), rather than the underlying

timesX and Z, which will often be the times of interest. For example, know-

ing the distribution of X would be important as a basis for maintenance

optimization. It is well known13,4, however, that in a competing risks case

as described here, the marginal distributions of X and Z are not identifi-

able from observation of (Y, δ) alone unless specific assumptions are made
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on the dependence between X and Z. The most used assumption of this

kind is to let X and Z be independent, in which case identifiability follows.

This assumption is not reasonable in our application, however, since the

maintenance crew is likely to have some information regarding the compo-

nent’s state during operation. This insight is used to perform maintenance

in order to avoid component failures. We are thus in practice usually faced

with a situation of dependent competing risks between X and Z.

Lindqvist, Støve and Langseth10 suggested a model called the repair

alert model for describing the joint behavior of failure times X and PM-

times Z. This model is a special case of random signs censoring, Cooke2,3,

under which the marginal distribution of X is identifiable. Recall that Z is

said to be a random signs censoring of X if the event {Z < X} is stochasti-

cally independent of X, i.e. if the event of having a PM before failure is not

influenced by the time X at which the component fails or would have failed

without PM. The idea is that the component emits some kind of signal be-

fore failure, and that this signal is discovered with a probability which does

not depend on the age of the component. The repair alert model extends

this idea by defining in addition a repair alert function which describes the

“alertness” of the maintenance crew as a function of time.

The main emphasis of the present chapter is on statistical inference for

the repair alert model. It will be assumed that data are available for a sam-

ple of N independent observations of (Y, δ), which may be right censored.

In the case of censoring we only know that Y is greater than the censor-

ing time, but do not know the type of event (failure of PM) that would

have been eventually experienced. Independent censoring will be assumed

in this case. This assumption is reasonable in many cases and is needed

to identify the distribution of (Y, δ) and hence the distribution of X under

random signs censoring. The ability to handle censored data is important

for practical applications, and this is the main motivation for the present

chapter.

Two examples will be given: In the first example we reconsider the data

given by Mendenhall and Hader11. These data are type I censored at a

fixed time τ , but were for illustrative purposes analyzed in Lindqvist et

al.10 without taking these censorings into account.

The second example is based on data from the OREDA database12 and

are also considered by Langseth and Lindqvist8. The component failures

can in this example be due to several different failure modes. We study one

of the failure modes with respect to failure time X and PM-time Z, while

treating failure and PM events for the other failure modes as censorings.
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2. Notation, definitions and basic facts

We assume that (X,Z) is a pair of continuously distributed life variables,

with the properties that P (X = Z) = 0 and 0 < P (Z < X) < 1. The

cumulative distribution functions of X and Z are, respectively, FX(t) =

P (X ≤ t) and FZ(t) = P (Z ≤ t).

Now let (Y, δ) define a competing risk case between X and Z. Here Y =

min(X,Z) and δ = I(Z < X). The distribution of (Y, δ) is characterized by

the subdistribution functions of X and Z, defined respectively by F ∗X(t) =

P (X ≤ t,X < Z) ≡ P (Y ≤ t, δ = 0) and F ∗Z(t) = P (Z ≤ t, Z < X) ≡

P (Y ≤ t, δ = 1). Note that the functions F ∗X and F ∗Z are nondecreasing

with F ∗X(0) = F ∗Z(0) = 0 and F ∗X(∞) + F ∗Z(∞) = 1. Any pair of functions

K1,K2 satisfying these conditions, will be referred to as a subdistribution

pair.

We next define the conditional distribution functions of X and Z re-

spectively by F̃X(t) = P (X ≤ t|X < Z) and F̃Z(t) = P (Z ≤ t|Z < X).

Note that F̃X(t) = F ∗X(t)/F ∗X(∞), F̃Z(t) = F ∗Z(t)/F
∗
Z(∞).

For convenience we assume the existence of densities corresponding to

each of the functions defined above, i.e. fX(t) = F ′X(t), f∗X(t) = F ∗
′

X (t),

f̃X(t) = F̃ ′X(t), and similarly for Z.

It follows by definition that the subdistribution functions F ∗X and F ∗Z
are identifiable from observation of (Y, δ). In practice this means that if an

infinite sample of (Y, δ) is available, then we can estimate the subdistribu-

tion functions without error. On the other hand, the marginal distribution

functions FX and FZ are not identifiable in this manner from observation

of (Y, δ)13,4. Thus, even with an infinite sample of (Y, δ) we are unable to

estimate FX and FZ exactly.

3. The repair alert model

Definition 1: The pair (X,Z) of life variables satisfies the requirements

of the repair alert model provided the following two conditions both hold:

(i) The event {Z < X} is stochastically independent of X (i.e. Z is a

random signs censoring of X).

(ii) There exists an increasing function G with G(0) = 0 such that for all

x > 0,

P (Z ≤ z|Z < X,X = x) =
G(z)

G(x)
, 0 < z ≤ x .
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The function G is called the cumulative repair alert function. Its deriva-

tive g (which we shall assume exists) is called the repair alert function.

The repair alert model is, as already noted, a specialization of random

signs censoring, obtained by introducing the repair alert function g. Part

(ii) of the definition means that, given a potential failure at time X = x,

and given that a PM will be performed before that time, the conditional

density of the actual time Z of PM is proportional to g. The repair alert

function is meant to reflect the reaction of the maintenance crew. Thus g(t)

ought to be large at times t for which failures are expected and the alert

therefore should be high. Langseth and Lindqvist7 simply used g(t) = λX(t)

where λX is the hazard rate of the failure time X.

It is seen that the repair alert model is completely determined by the

marginal distribution function FX ofX, the cumulative repair alert function

G, the probability q ≡ P (Z < X), and the assumption that the event {Z <

X} is independent ofX. In fact, given those ingredients it is straightforward

to derive a valid joint distribution for (X,Z)10.

From the definition we obtain the following expressions for the

subdistribution- and conditional distribution functions10:

F̃X(t) = FX(t), (1)

F ∗X(t) = (1− q)FX(t), (2)

F̃Z(t) = FX(t) +G(t)

∫ ∞

t

fX(y)

G(y)
dy, (3)

f̃Z(t) = g(t)

∫ ∞

t

fX(y)

G(y)
dy, (4)

F ∗Z(t) = qF̃Z(t). (5)

It follows from (1)-(2) that the marginal distribution function FX as

well as q are identifiable under the repair alert model, being functions of the

subdistribution function F ∗X(t). Moreover, (1) and (3) imply the following

relation between the conditional distribution functions F̃Z for Z and F̃X
for X,

F̃Z(t) > F̃X(t) for all t > 0. (6)

This property can be used in a graphical check of plausibility of a repair

alert model for a data set by plotting empirical estimators of F̃X and F̃Z .

Two examples are given in Figure 1.

The ordering (6) between F̃X and F̃Z holds whenever Z is a random

signs censoring of X (Cooke2). In fact, Cooke2 proved that this ordering is
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also sufficient for the existence of a joint distribution of X and Z satisfying

the requirements of random signs and having a given set of subsurvival

functions consistent with F̃X and F̃Z .

As a strengthening of Cooke’s result it was shown in Lindqvist et al10.

that whenever (6) holds, there is an essentially unique repair alert model

having a given set of subsurvival functions for X and Z consistent with F̃X
and F̃Z . A precise formulation of this is given by the following result:

Theorem 2: Let K1,K2 be a subdistribution pair such that K2 is differ-

entiable. Suppose furthermore that

K1(t)

K1(∞)
<

K2(t)

K2(∞)
for all t > 0.

Then there exists a pair (X,Z) of life variables which satisfy the require-

ments of the repair alert model and which are such that

F ∗X(t) = K1(t), F
∗
Z(t) = K2(t) for all t ≥ 0.

Moreover, for any such pair (X,Z) we have FX(t) = K1(t)/K1(∞), q =

K2(∞), while the cumulative repair alert function G is uniquely (modulo

a multiplicative constant) given by

G(t) = exp

{

∫ t

t0

f̃Z(w)

F̃Z(w)− FX(w)
dw

}

(7)

= exp

{

∫ F̃Z(t)

F̃Z(t0)

dy

y − FX(F̃−1Z (y))

}

(8)

for all t > 0, where t0 > 0 is a fixed, arbitrary constant.

The theorem is proved in Lindqvist et al.10 Note that the expression (7)

for G is obtained from equations (3)-(4) which imply that

f̃Z(t)

F̃Z(t)− FX(t)
=

g(t)

G(t)
.

A simple example of a cumulative repair alert function is G(t) = tβ

where β > 0 is a parameter. Then g(t) = βtβ−1 so β = 1 means a constant

repair alert function, while β < 1 and β > 1 correspond to, respectively,

a decreasing and increasing repair alert function. It follows, furthermore,

that for this repair alert function we have

E(Z|Z < X) =

∫ ∞

0

(1− F̃Z(z))dz =
β

β + 1
E(X). (9)
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Thus cost efficient PM performance corresponds to large values of β, since

this implies that PM can be expected to be close to the potential failure

time.

4. Statistical inference in the repair alert model

4.1. Independent censoring

Let (Y, δ) be the result of a competing risk case between failure time X and

PM-time Z of a component. Suppose now that observations of (Y, δ) may

be right censored by a random variable C which is independent of (X,Z)

and hence of (Y, δ). Then by considering the competing risk case between

Y and C it follows by independence that the marginal distributions of Y

and C are identifiable. However, in order to identify the underlying repair

alert model we need to have identifiability of the distribution of the pair

(Y, δ). Fortunately, this is the case.

To see this, note first that the probabilities P (y ≤ Y ≤ y+dy, δ = 0, Y <

C) and P (y ≤ Y ≤ y + dy, δ = 1, Y < C) are identifiable from observation

of the competing risk case between X,Z and C. But these probabilities can

be written as, respectively, f∗X(y)P (C > y)dy and f∗Z(y)P (C > y)dy by

independence of Y and C. Thus, assuming that P (C > y) > 0 for all y, the

subdistribution functions of X and Z are identifiable since the distribution

of C is. Hence the underlying repair alert model can be identified as well.

4.2. Data sets and preliminary graphical model checking

Let there be N independent right censored observations as described in the

previous subsection. By extending the notation of Bedford and Cooke1,

Section 9.5, we may let these observations be represented on the form

x1, . . . , xm, z1, . . . , zn, c1, . . . , cr, which are, respectively, the observed times

to failure, the observed times to PM, and the observed times to censoring.

For practical illustration we use two data sets. The first one, from

Mendenhall and Hader11, gives failure times for ARC-1 VHF communi-

cation transmitter-receivers of a single commercial airline. They will later

be referred to as the VHF-data. Failed units were removed from the air-

craft for maintenance. However, in some cases the apparent failures were

unconfirmed upon arrival at the maintenance center, as the unit exhibited

satisfactory operation when tested there. Thus, the failure times can be di-

vided into two groups, unconfirmed, Z, and confirmed failures,X. There are

m = 218 observations of X, and n = 107 observations of Z. The data were
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censored at time τ = 630, and there are r = 44 such censored observations.

This gives a total of N = 369 observations in the dataset.

The second dataset was prepared by Langseth and Lindqvist8. These

data are failure times of a single mechanical component taken from the

OREDA database12, and will be referred to as the OREDA data. The com-

ponent under study could fail due to several different failure modes. In

the present data study we will focus on failures of type “2”, and treat the

other failures as independent censorings of the failure times. The component

failures are either “critical”, X, or “non-critical” (degraded or incipient),

Z. We will only use data starting from the tenth event, that is, after the

first critical failure was repaired. This gives us m = 12 observations of X,

n = 29 observations of Z, and r = 37 censored observations, a total of

N = 78 cases. The resulting data are given in Table 1.

Table 1. OREDA data. The first line contains the observed failure times xi;
the second line contains the observed PM times zj ; the two last lines contain

the censoring times ck.

xi: 1,1,5,8,10,11,11,13,25,80,85,117
zj : 1,1,1,1,1,1,1,1,3,3,3,3,4,5,7,8,10,12,12,14,17,18,24,24,28,28,28,32,36
ck: 1,1,2,2,2,2,2,2,3,3,4,4,4,5,6,6,6,7,7,7,10,12,12,12,12,13,19,30,31,32,

32,47,49,61,65,76,97

Suppose we want to fit a repair alert model to the data. By (6) we need

to have F̃Z(t) > F̃X(t) for all t > 0. For a graphical verification of this, we

use nonparametric estimators of the conditional distribution functions F̃X
and F̃Z as derived by Lawless9, Section 9.2. We then start by computing

the Kaplan-Meier estimator Ŝ(t) based on the right censored sample of Y ’s,

i.e. the union {yi} of the xi and the zj with the ck being censorings. This

leads to

Ŝ(t) =
∏

i:yi<t

R(yi)− d(yi)

R(yi)
; t > 0,

where R(t) is the total number of units (components) which are at risk just

before t, while d(t) is the number of observed events (failure or PM) at

time t. The subdistribution functions can next be estimated using equation
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(9.2.5) in Lawless9, which in our notation can be written as

F̂ ∗X(t) =
∑

i:xi≤t

Ŝ(xi)

R(xi)
, (10)

F̂ ∗Z(t) =
∑

j:zj≤t

Ŝ(zj)

R(zj)
. (11)

Recall that the conditional distribution functions are given by F̃X(t) =

F ∗X(t)/F ∗X(∞) and likewise for F̃Z . Moreover, recall that F ∗X(∞)+F ∗Z(∞) =

1. The natural estimators of F̃X and F̃Z are obtained by dividing (10)-(11)

by F̂ ∗X(∞) and F̂ ∗Z(∞), respectively. However, the estimates F̂ ∗X(∞) and

F̂ ∗Z(∞) do not necessarily add to 1, so Lawless9 suggests to normalize them

to have sum 1. Thus, defining

q̂ =
F̂ ∗Z(∞)

F̂ ∗X(∞) + F̂ ∗Z(∞)
, (12)

we obtain the estimators

ˆ̃FX(t) = F̂ ∗X(t)/(1− q̂), (13)

ˆ̃FZ(t) = F̂ ∗Z(t)/q̂. (14)

Figure 1 shows the plots of ˆ̃FX(t) and ˆ̃FZ(t) obtained in this way for

the two datasets. The required inequality (6) is apparently satisfied for the

estimated functions, and we conclude that it is indeed meaningful to fit

repair alert models to both datasets. Formal tests for investigations of this

kind are considered by Dewan et al.6

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  100  200  300  400  500  600
 0

 0.2

 0.4

 0.6

 0.8

 1

 0  20  40  60  80  100  120

Fig. 1. Empirical subdistribution functions ˆ̃
FZ(t) (thick line) and ˆ̃

FX(t) (thin line) for

the VHF data (left panel) and OREDA data (right panel).
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4.3. Nonparametric estimation

In this subsection we suggest simple nonparametric estimators of q, FX and

G for the repair alert model. First, a natural estimator for q will be the q̂

defined by (12). For the VHF-data this equals q̂ = 0.33, and the OREDA

data gives q̂ = 0.71. Next, by (1) we may estimate FX by ˆ̃FX given in (13)

and depicted in Figure 1. It remains therefore to estimate G.

Following Lindqvist et al.10, we start from the definition of G(t) in (8),

repeated here for ease of reference,

G(t) = exp

{

∫ F̃Z(t)

F̃Z(t0)

dy

y − FX(F̃−1Z (y))

}

.

We then proceed by substituting the estimator ˆ̃FX(t) for FX(t). It follows

from (10) and (13) that ˆ̃FX is constant on intervals [x`, x`+1), with value
ˆ̃FX(x`). Thus

ˆ̃FX(F̃−1Z (y)) = ˆ̃FX(x`) for F̃Z(x`) ≤ y < F̃Z(x`+1), ` = 1, . . . ,m− 1.

By selecting t0 = x1 and t = xi in (8), we obtain

∫ F̃Z(xi)

F̃Z(x1)

dy

y − ˆ̃FX(F̃−1Z (y))
=

i−1
∑

`=1

∫ F̃Z(x`+1)

F̃Z(x`)

dy

y − ˆ̃FX(x`)

=

i−1
∑

`=1

log
F̃Z(x`+1)−

ˆ̃FX(x`)

F̃Z(x`)−
ˆ̃FX(x`)

.

Since G(t) is only determined modulo a constant, we can define Ĝ(x1) =

1. Finally, substituting ˆ̃FZ(t) from (14) for F̃Z(t), we obtain the non-

parametric estimator for G(t) defined at the points t = xi:

Ĝ(xi) =

i−1
∏

`=1

ˆ̃FZ(x`+1)−
ˆ̃FX(x`)

ˆ̃FZ(x`)−
ˆ̃FX(x`)

. (15)

We have tacitly assumed that ˆ̃FZ(t) > F̂X

(

ˆ̃F−1Z (t)
)

for all ` in this de-

velopment. This assumption is theoretically justified by (6), but in practice

it may still happen that ˆ̃FZ(x`) ≤ F̂X

(

ˆ̃F−1Z (x`)
)

for some `. In this case

we suggest to put the corresponding factor of (15) equal to 1.

Figure 2 shows the described estimator of G for the two data sets with

log Ĝ(xi) plotted against log xi. The motivation for these plots is to check
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whether the parametrization G(t) = tβ is plausible. In that case we will

have logG(t) = β log t, so we would expect plots of log Ĝ(xi) against log xi
to be approximately a straight line with slope β. This is roughly true in

Figure 2. Based on the plots, we may estimate the slopes of the curves

to be around 5 (VHF-data), and .7 (OREDA-data). These estimates are

therefore our first guesses of β.
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Fig. 2. Nonparametric estimate log Ĝ(xi) plotted against log xi for the VHF data (left

pane) and the OREDA data (right pane).

4.4. Parametric estimation

In this section we assume the special parametric model where X is ex-

ponentially distributed with fX(x) = λe−λx, while G(t) = tβ . For nota-

tional simplicity, we recall the definition of the incomplete Gamma func-

tion, Γ(ψ, t) =
∫∞

t
wψ−1e−wdw. Note that the integral converges for all

real ψ when t > 0, and for all ψ > 0 when t = 0.

Following Crowder4, the contributions to the likelihood from an un-

censored observation is given by the subdensity function at the observed

time. Thus, (1)-(5) imply that the likelihood contribution from an xi is

f∗X(xi) = (1 − q)fX(xi) = (1 − q)λe−λxi ; the contribution from a zj
is f∗Z(zj) = q · g(zj)

∫∞

zj
[fX(t)/G(t)]dt = qλβ(λzi)

β−1Γ(1 − β, λzi), and

finally the contribution from a censoring ck is P (min(X,Z) > ck) =

1− (F ∗X(ck) + F ∗Z(ck)) = e−λck − q(λck)
β · Γ(1− β, λck).

The total likelihood for the data is obtained as the product for each
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data point. Taking the logarithm we obtain the log-likelihood function

l(λ, β, q) = m log(1− q) + n log q + (n+m) log λ+ n log β

−λ

m
∑

i=1

xi + (β − 1)

n
∑

i=1

log (λzi) +

n
∑

i=1

log[Γ(1− β, λzi)]

+

r
∑

k=1

log[exp(−λck)− q(λck)
β · Γ(1− β, λck)]. (16)

Maximum likelihood estimates of the parameters λ, β and q can be

found by maximizing (16), which needs to be done numerically. It turns

out that the EM-algorithm5 is useful here. The general idea is to augment

the data artificially in order to obtain a more tractable likelihood function,

for which there may exist simple expressions for the maximum likelihood

estimators. This is the so called M-step (maximization step) of the EM-

algorithm. The M-step alternates in an iterative manner with the E-step

(expectation step), in which we compute the conditional expectation of the

augmented likelihood function conditional on the observed data.

During the M-step we shall assume that we have always observed X

and δ, while Z was observed only when δ = 1. Furthermore, we assume

that none of these observations are censored by C. It is practical to change

slightly the meaning of the xi and zj . We now assume that there are N

triples (xi, zi, δi). Here δi = 0 if xi < zi, in which case we observe only

xi, δi, and δi = 1 if zi < xi, in which case we observe the whole triple

(xi, zi, δi). The augmented likelihood now becomes

LA(λ, β, q) =

N
∏

i=1







λe−λxi(1− q)1−δiqδi

(

βzβ−1i

xβi

)δi







which by taking the logarithm gives the augmented log-likelihood,

lA(λ, β, q) = N log λ− λ

N
∑

i=1

xi +N log(1− q)− log(1− q)

N
∑

i=1

δi

+ log q

N
∑

i=1

δi + log β

N
∑

i=1

δi + (β − 1)

N
∑

i=1

δi log zi − β

N
∑

i=1

δi log xi. (17)

We consider the M-step first, where we find the maximum likelihood

estimators from (17). Then we consider the E-step where we replace the

unobserved terms of the log-likelihood by their expected values, conditional

on the observed data and the current parameter estimates.
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M-step:Maximization of (17) gives us explicit expressions for the max-

imum likelihood estimators:

q̂ =

∑N
i=1 δi
N

, λ̂ =
N

∑N
i=1 xi

, β̂ =

∑N
i=1 δi

∑N
i=1 δi log(xi/zi)

. (18)

E-step: In this step we compute the expected value of (17) given our

data x1, . . . , xm, z1, . . . , zn, c1, . . . , cr. For the observations where the failure

time xi is observed, we have δi = 0 and the value of zi is not needed. For the

observations where the PM-time zi is observed we have δi = 1 while xi is

not observed. Hence, we need to replace the corresponding xi and log xi in

(17) by their conditional expectations. These are computed by first noting

that the conditional density of X given {Z < X,Z = z} is

f(x|Z < X,Z = z) =
x−βe−λx

λβ−1Γ(1− β, λz)
for x > z,

and hence that E[X|Z < X,Z = z] = Γ(2−β,λz)
λ·Γ(1−β,λz) and E[log(X)|Z <

X,Z = z] =
∫∞

λz
log(w)w−β exp(−w)dw/Γ(1− β, λz)− log (λ).

Finally, we consider the observations where the censoring time C =

c is observed. In this case we do not observe δi, and hence from

(17) we need to compute E [X|min (X,Z) > c], E [δ|min (X,Z) > c],

E [δ logX|min (X,Z) > c], and E [δ logX|min (X,Z) > c]. After some al-

gebraic manipulations, we find that

P (Z < X|min(X,Z) > c) =
P (Z > c|Z < X) · P (Z < X)

P (X > c,Z > c)

=
qβ
∫∞

λc
uβ−1Γ(1− β, u)du

exp(−λc)− q(λc)β · Γ(1− β, λc)
,

f(x|min(X,Z) > c,Z < X) =
fX(x)P (Z > c|X = x, Z < X)

∫∞

c
fX(u)P (Z > c|X = u, Z < X)du

=
λ exp(−λx)

[

1− (c/x)β
]

exp(−λc)− (λc)
β
Γ(1− β, λc)

for x > c,

f(x|min(X,Z) > c,X < Z) =
fX(x)

P (X > c)
= λ exp (−λ(x− c)) for x > c,

f(z|min(X,Z) > c,Z < X) =
g(z)

∫∞

z
[fX(x)/G(x)] dx

∫∞

c
g(z)

∫∞

z
[fX(x)/G(x)] dxdz

=
zβ−1Γ(1− β, λz)

∫∞

c
zβ−1Γ(1− β, λz) dz

for z > c.
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From these conditional densities we find the desired expectations. The EM-

algorithm now proceeds by using the augmented dataset to re-estimate

the parameters using (18), use these new estimators to generate a new

augmented database, and so on until convergence.

The resulting estimates for the VHF and OREDA-data are given in

Tables 2 and 3, respectively. We also include bounds for approximate 95%

confidence intervals based on standard log-likelihood theory. We see that β

appears to be larger for the VHF data than for the OREDA data. This is

in correspondence with Figure 1, where the sub-distribution functions for

the VHF data are closer together than those of the OREDA data. It is also

interesting to not that β̂ = 1.00 for the OREDA data. This corresponds to

choosing g(t) proportional to the hazard rate of the failure times, as in the

class of models investigated by Langseth and Lindqvist7. Finally, we note

that the confidence interval for β in the VHF data extends all the way to

infinity. The meaning of using β =∞ should be seen in relation to (9), and

indicates that when an unconfirmed failure (Z) was observed, it occurred

immediately before a failure (X) would have been realized.

Table 2. Maximum likelihood estimates and approximate
95% confidence intervals for parametric repair alert model for
the VHF-data.

Parameter Estimate Lower bound Upper bound

λ 3.10 · 10−3 2.73 · 10−3 3.51 · 10−3

β 4.44 2.08 ∞

q 0.318 0.270 0.369

Table 3. Maximum likelihood estimates and approximate

95% confidence intervals for parametric repair alert model
for the OREDA-data.

Parameter Estimate Lower bound Upper bound

λ 1.80 · 10−2 1.04 · 10−2 2.86 · 10−2

β 1.00 .553 2.74
q 0.621 0.461 0.771

5. Concluding remarks

In this chapter we have considered the repair alert model, which describes a

specific dependence structure between failures (X) and preventive mainte-

nance (Z). We extend our previous work10 by including external censoring
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in the model. The use of our model is exemplified by analyzing two differ-

ent datasets: The VHF data are type I censored at a given time τ but have

previously been analyzed without taking this into account. The OREDA

dataset describes several different failure modes, and we handle this sit-

uation by focusing on one particular failure mode and consider all other

failure modes as external censorings.
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