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Abstract

Nonhomogeneous Poisson processes (NHPPs) are often used to model
failure data from repairable systems, and there is thus a need to check
model fit for such models. We study the problem of obtaining exact
goodness-of-fit tests for parametric NHPPs. The idea is to use condi-
tional tests given a sufficient statistic under the null hypothesis model.
The tests are performed by simulating conditional samples given the
sufficient statistic. Algorithms are presented for testing goodness-of-
fit for the power law and the log-linear law NHPP models. It is noted
that while exact algorithms for the power law case are well known
in the literature, the availability of such algorithms for the log-linear
case seems to be less known. A data example, as well as simulations,
are considered.
Keywords: Sufficiency, Conditional test, Gibbs sampling, Power law
NHPP, Log-linear law NHPP

1 Introduction

As a motivating example, consider the following data from a reliability growth
program, taken from Leitch [1] (and analyzed in Section 7 in the present
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paper). For a particular repairable system are observed n = 10 failures, at
times 103, 315, 801, 1183, 1345, 2957, 3909, 5702, 7261, 8245. It is of interest
to have information on the random process behind the data. The reasons for
this could be, for example, to be able to predict future failures, or to obtain
increased knowledge of the underlying phenomenon. For certain applications
the motivation could otherwise be to compute optimal maintenance intervals,
or in software reliability applications to predict when to stop debugging a
program.

Nonhomogenous Poisson processes (NHPP) are widely used as models for
such failures of a repairable system. In practice it may thus be of interest to
check the NHPP property for a given set of data, by performing a so called
statistical goodness-of-fit test.

A nice and informative discussion of how to perform goodness-of-fit test-
ing in NHPP models is given in Baker [2]. In common use are general tests
based on the Cramer-von-Mises test or the Kolmogorov-Smirnoff test (Bain
and Engelhardt [3], Crow [4], Park and Kim [5]), but as Baker [2] advocates,
there is often a need for “purpose-built” tests to detect special types of de-
partures from NHPPs. This includes, for example, tests with power against
processes for which the NHPP property itself is violated, and not necessarily
just the functional form of the intensity.

One way to derive such tests is to embed the models in more general
parametric failure models and use standard likelihood ratio tests (see e.g.
Lindqvist et al. [6]). A practical problem with such an approach, and also
with most standard goodness-of-fit tests, is that the observed number of
failures is often too small to justify the use of asymptotic distributions for
computation of critical values or p-values. This applies in particular to the
example considered above, and we shall see later (Section 7) that asymptotic
tests may be inappropriate here.

The above discussion motivates the need for exact goodness-of-fit tests
when samples are small. The advantage of exact tests is that the nominal
significance level holds exactly (possibly modulo a Monte Carlo error), while
this is not necessarily the case for asymptotic tests. It is well known that the
power law NHPP (see Section 2 for definition) admits exact tests. Indeed
(Bain and Engelhardt [3], Baker [2]), the estimators of the parameters have
a certain pivotal property which can be utilized in computing distributions
of test statistics. This pivotal property was utilized in goodness-of-fit testing
in for example [2] and [5]. Goodness-of-fit testing in power law NHPPs
has, furthermore, been considered in a large number of articles, for example
Kumar and Klefsjö [7], Gaudoin [8, 9], Crétois et al. [10], Gaudoin et al.
[11], Zhao and Wang [12]

The aim of the present study is to consider in some generality, how one
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can obtain exact goodness-of-fit tests for parametric NHPP models by condi-
tioning on a sufficient statistic under the null model. While the case of power
law NHPP is well studied in the literature, as already pointed out, we shall
still consider it here as a reference case. A main purpose of our paper is, on
the other hand, to study how similar analyses can be done for the log-linear
law NHPP, which seems to be the standard parametric “competitor” to the
power law model in reliability studies. It turns out, however, that exact
analyses are not that straightforward for this model because a pivotal struc-
ture like the one for the power law is not present. This fact was apparently
first noted by Lee [13], who considered conditional testing given a sufficient
statistic in the log-linear model, but was only able to give an approximate
solution. An interesting exception here is the exact test presented by Gau-
doin [9]. This test, which is probably the first exact test presented for the
log-linear NHPP, is based on the conditional probability integral transforma-
tion (CPIT) and utilizes conditioning on the appropriate sufficient statistic.
Gaudoin [8] derives similarly CPIT tests for the power law model. As noted
in [9], the tests based on CPIT are often not so powerful, however. Zhao
and Wang [12] consider goodness-of-fit testing in particular for the log-linear
model, but use asymptotic theory for maximum likelihood and hence do not
obtain exact tests. The problem connected to such tests is briefly illustrated
in a simulation in Section 7.

The tests considered in this paper are all based on Monte Carlo simu-
lations of the relevant conditional distributions. They are thus exact only
up to simulation error. The tests may therefore be called Monte Carlo ex-
act. However, in principle such errors may be made as small as desired by
increasing the number of simulations so the notion of exact testing is still
warranted.

It should be stressed that our emphasis is on how to obtain exact tests
when a goodness-of-fit statistic Z is given. The construction or choice of test
statistics Z is hence beyond the primary scope of this article. Still we discuss
the problem and illustrate by numerical studies.

The paper is organized as follows. Section 2 contains the basic setup
and assumptions. In particular we present likelihood functions and sufficient
statistics of the two parametric models under particular study. In Section
3 we describe the conditional tests in general terms, while in Section 4 we
present algorithms for obtaining the needed conditional samples from the
two parametric models. Some popular goodness-of-fit statistics for NHPPs
are presented in Section 5. The modifications to be done when going from
time censoring to failure censoring are summarized in Section 6. Section 7
contains a data example and some simulations, while the last section, Section
8, contains a discussion of results and possible extensions.
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2 Models, null hypotheses and sufficient

statistics

In analyses of repairable systems one traditionally considers either failure
censoring, meaning that the process is observed from time t = 0 and until
a prespecified number n of failures have occurred; or time censoring, where
the process is observed until a given time τ . To save space, we will mainly
assume time censoring in our theoretical derivations, and then discuss the
necessary modifications needed to handle failure censoring in a separate sec-
tion (Section 6). It is believed that time censoring is of most practical inter-
est, although laboratory tests may be set up as experiments which run until
a predescribed number of failures have occurred.

Thus, suppose we observe an NHPP with intensity function λ(t) in a
time interval [0, τ ]. Let N(τ) denote the number of failures occurring in the
interval, and let the failure times be denoted T1, . . . , TN(τ). The data can
thus be written in the form

T = (N(τ), T1, . . . , TN(τ)), (1)

and the log-likelihood function resulting from these observations is given by
(Crowder et al. [14, p. 66], Meeker and Escobar [15, p. 413]),

N(τ)∑
j=1

log λ(Tj)−
∫ τ

0
λ(u)du. (2)

In the present paper we shall consider null hypotheses of the form

H0 : T ∼ NHPP(λ(·; θ)) vs. H1 : H0 does not hold, (3)

where by NHPP(λ(·; θ)) we mean an NHPP with intensity function λ(·; θ) for
some θ in the appropriate parameter space. The null hypothesis is just the
statement that the observations T come from this family of NHPP models.
Any test of H0 vs. H1 can now be called a goodness-of-fit test.

The two most popular parametrizations of NHPPs are the power law,
with intensity function given by

λp(t) = abtb−1; a, b > 0, t > 0,

and the log-linear law, with intensity function

λ`(t) = exp(a+ bt); −∞ < a, b <∞, t > 0.

These will serve as our main examples in the present paper.

4



For the power law NHPP the log-likelihood function (2) becomes

lp(a, b) = N(τ)(log a+ log b) + (b− 1)
N(τ)∑
j=1

log Tj − aτ b. (4)

The sufficient statistic is hence, by the factorization theorem (Casella and
Berger [16]),

Sp(T ) = (N(τ),
N(τ)∑
j=1

log Tj). (5)

Sufficiency means, intuitively, that this statistic contains all the infor-
mation about the parameters that is contained in the data. In particular,
looking at (4), it is clear that the maximum likelihood estimators of the
parameters depend on the data only through this statistic. The usual defini-
tion, and the key feature to be used in this paper, is that a statistic is called
sufficient if the conditional distribution of the data, given the value of the
sufficient statistic, does not depend on the parameters (Casella and Berger
[16]). The factorization theorem, as cited above, is usually the simplest way
of finding a sufficient statistic.

For the log-linear law NHPP we get, using (2), the log-likelihood function

l`(a, b) = N(τ)a+ b
N(τ)∑
j=1

Tj − (ea/b)(ebτ − 1). (6)

Hence the sufficient statistic is

S`(T ) = (N(τ),
N(τ)∑
j=1

Tj). (7)

3 Conditional testing given the sufficient

statistic

Suppose that we have given the observation T on the form (1). For a given
parametric family {λ(·, θ)} we are interested in testing the null hypothesis
H0 in (3).

Let there be given a test statistic Z ≡ Z(T ), which is a function of the
data T , and which is a goodness-of-fit statistic in the sense that it is designed
to have the ability to reveal departure from the null hypothesis.

Let S ≡ S(T ) be the sufficient statistic for the unknown parameter θ
under the null hypothesis model, provided such one exists. This sufficient
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statistic is generally multivariate, usually with the same dimension as the
parameter θ (see for example (5) and (7)). Suppose also, for simplicity, that
large values of Z correspond to violation of the null hypothesis.

An α-level conditional test of H0 rejects, conditionally given S = s, when
Z ≥ k(s), where k(s) is a critical value chosen such that

PH0(Z ≥ k(s)|S = s) = α. (8)

(We assume for simplicity that exact equality to the right of (8) is always
possible, which will be the case in our applications). In order to find the
critical value k(s) we need to know the conditional distribution of Z given
S = s. Since this distribution, by sufficiency, is independent of the unknown
parameters under the null hypothesis model, it can at least in principle be
found and then applied to calculate k(s). Of course, this might in practice
be difficult or even impossible to do analytically, and that is why we shall
use Monte Carlo simulations in this paper.

For now, suppose we are able to simulate realizations of the conditional
distribution of Z given S = s. Let the observed data be Tobs (in the form (1)),
and let sobs = S(Tobs) and zobs = Z(Tobs) be the observed values of, respec-
tively, the sufficient statistic and the test statistic Z. Instead of computing
the value of k(sobs) we shall consider the conditional p-value,

pobs = PH0(Z ≥ zobs|S = sobs). (9)

Observe that (8) and (9) together imply that pobs ≤ α if and only if zobs ≥
k(sobs). Hence the α-level conditional test is equivalent to the test which
rejects the null hypothesis if pobs ≤ α. The key to perform the conditional
test is hence to compute the conditional p-value in (9).

For this, we simulate a large number, M say, of realizations T ∗ from
the conditional distribution of T given S = sobs and compute Z∗ = Z(T ∗)
for each of them. The conditional p-value pobs is then approximated by the
relative frequency of the event Z∗ ≥ zobs, i.e.

p̂obs = #{Z∗ ≥ zobs}/M.

It is clear that p̂obs can be made arbitrarily close to pobs by using a sufficiently
large M .

Note that a conditional test as described above is also an exact uncondi-
tional α-level test, since we have

PH0(reject H0) = ES[PH0(reject H0|S)] = ES[PH0(Z ≥ k(S)|S)] = α,

by definition of the function k(s). However, in practice we have a Monte
Carlo exact test due to the approximation p̂obs.
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4 Conditional sampling for parametric NHPP

models

In the present section we give recipes for simulating samples of the form
(1) conditionally given the appropriate sufficient statistic, needed for the
computation of conditional p-values. We do this in detail for the two featured
NHPP models, power law and log-linear law. A brief discussion of how to do
this for more general models is given in the final section of the paper.

A classical trick for computation of conditional distributions given the
sufficient statistic is to choose parameter values which give rise to particularly
simple models. This can be done since the conditional distribution is the same
for all parameter values. Indeed, for the power law and the log-linear law we
shall use parameter values corresponding to homogeneous Poisson processes
with unit intensity (denoted HPP(1)).

This means that the desired samples T ∗ can be found as samples from a
HPP(1), conditionally given the sufficient statistic. Note that the statistics
(5) and (7) include the number of failures, N(τ) as one component. Our
further clue is now to condition on N(τ) = n first.

It is well known (e.g. Ross [17]) that conditionally on N(τ) = n, the
event times of an HPP(1) are distributed as the order statistics of n i.i.d.
random variables uniformly distributed on [0, τ ]. In the following we denote
this distribution by U [0, τ ].

Thus, suppose our data are T = (n, T1, . . . , Tn), that is we have observed
N(τ) = n events in [0, τ ]. Let, further,

∑n
j=1 log Tj = s1 and

∑n
j=1 Tj = s2.

Then, the simulation of new samples T ∗ = (N∗(τ), T ∗1 , . . . , TN∗(τ)) conditional
on the sufficient statistics in the power law and log-linear cases, reduces to

(i) simulate n i.i.d. values X1, . . . , Xn from the distribution U [0, τ ], condi-
tional on respectively

∑n
j=1 logXj = s1 and

∑n
j=1Xj = s2,

(ii) put N∗(τ) = n, T ∗j = X(j) for j = 1, 2, . . . , n, where X(1), . . . , X(n) is the
increasing ordering of the sample X1, . . . , Xn.

The simulation problem is hence transformed to a problem of conditional
sampling from uniform variables. It is the purpose of the next two subsections
to show how this can be done in the two featured cases.

4.1 The power law case

As indicated in the Introduction, the power law case admits well-known
simple exact algorithms for simulating from the conditional distributions.
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The following lemma shows how to perform the task (i) given above. We
write s instead of s1 for simplicity.

Lemma 1 Let X1, . . . , Xn be independent and uniformly distributed on [0, τ ].
Then samples from the conditional distribution of X1, . . . , Xn given

∑n
i=1 logXi =

s can be simulated by the recipe

1. Draw U1, . . . , Un i.i.d. from U [0, 1].

2. Let Xi = τU
(s−n log τ)/

∑n

i=1
logUi

i .

Proof: Let U1, . . . , Un be i.i.d. from U [0, 1]. It is well known that − logUi is
exponentially distributed with expected value 1. Hence the vector

(logU1/
n∑
j=1

logUj, . . . , logUn/
n∑
j=1

logUj)

is independent of
∑n
j=1 logUj. A standard proof of this uses Basu’s theorem

(Casella and Berger [16]). Using this independence result we can write

P (u1 ≤ U1 ≤ u1 + ∆1, . . . , un ≤ Un ≤ un + ∆n|
n∑
j=1

logUj = t)

= P (
log u1

t
≤ logU1∑n

j=1 logUj
≤ log(u1 + ∆1)

t
, . . . ,

log un
t
≤ logUn∑n

j=1 logUj
≤ log(un + ∆n)

t
)

= P (u1 ≤ U
t/

∑n

j=1
logUj

1 ≤ u1 + ∆1, . . . , un ≤ U
t/

∑n

j=1
logUj

n ≤ un + ∆n)

for ∆1, . . . ,∆n > 0. Thus the lemma holds for τ = 1 by letting the ∆i → 0.
For general τ > 0 one applies the result above to Ui = Xi/τ and notes

that
∑

logXi = s is equivalent to
∑

logUi = s−n log τ . This ends the proof.

As a special result, we get the formula obtained by Lee [13] for simulating
the conditional distribution of

∑n
i=1Xi given

∑n
i=1 logXi = s.

4.2 The log-linear law case

In the Introduction we indicated that the log-linear law NHPP does not
admit simple pivotal statistics, thus making exact statistical analyses less
straightforward. This fact is related to the fact that, in contrast to the result
given in Lemma 1, there is apparently no simple direct way of sampling from
the conditional distribution of uniforms X1, . . . , Xn on [0, τ ] given

∑n
j=1Xj =
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s. The main reason for this is that there is no simple expression for the
probability density of

∑n
j=1Xj.

Inspired by, for example, Lockhart et al. [18] and Diaconis and Sturmfels
[19], we shall use a slightly modified Gibbs sampler algorithm to simulate the
desired samples.

The algorithm is based on the lemma below, which gives the conditional
distribution of a pair (Xi, Xj) conditional on

∑n
i=1Xi = s and on the values of

all Xk for k 6= i, j. Note first that the conditional distribution of X1, . . . , Xn

given
∑n
i=1Xi = s is singular, so that in order to have a proper joint con-

ditional density we have to leave out one variable, say Xn, and consider the
conditional distribution of X1, . . . , Xn−1 given

∑n
i=1Xi = s.

Lemma 2 Let X1, . . . , Xn be independent and uniformly distributed on [0, τ ].
Then the conditional distribution of X1 given

X2 = x2, X3 = x3, . . . , Xn−1 = xn−1,
n∑
i=1

Xi = s (10)

is given as

X1 ∼
{
U [0, a] if a ≤ τ,
U [a− τ, τ ] if a > τ,

(11)

where a = s− x2 − x3 − · · · − xn−1.
Hence the conditional joint distribution of (X1, Xn) given (10) can be

represented by letting X1 have distribution (11) while Xn = a−X1.

Proof: The conditional distribution of X1 given (10), which is given by a
proper density by the comment preceding the lemma, must be the same as
the conditional distribution of X1 given X1 +Xn = s−x2− · · ·−xn−1, X2 =
x2, . . . , Xn−1 = xn−1. But by independence of the Xi, this distribution must
be the same as the conditional distribution of X1 given X1 +Xn = s− x2 −
· · ·−xn−1 ≡ a. This distribution is straightforward to derive and is given by
(11). This proves the lemma since the last part is trivial.

The algorithm is given next. Let M be a large number, depending on the
application.

Gibbs sampler algorithm for conditional sampling of
X1, . . . , Xn given

∑n
i=1Xi = s, for i.i.d. X1, . . . , Xn ∼ U [0, τ ]

1. Start with x0
i = s

n
for i = 1, ..., n; set m = 0.
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2. Draw integers 1 ≤ i < j ≤ n randomly. Let a = xmi + xmj .

3. Draw

xm+1
i ∼

{
U [0, a] if a ≤ τ,
U [a− τ, τ ] if a > τ.

Let
xm+1
j = a− xm+1

i .

4. If m < M , replace m by m+ 1 and return to step 2.

The theory of the Gibbs sampler (see Casella and George [20], Gelfand
and Smith [21]) guarantees that the distribution of the successive samples
(xm1 , . . . , x

m
n ) converges to the target distribution, whatever be the starting

vector. In fact, the successive samples form a Markov chain, and the target
distribution is the stationary distribution of this Markov chain. Thus, a
certain number of “burn in” samples are needed before the samples can be
taken to be from the correct distribution. It should also be noted that the
successive samples are not independent, as they are in the power law case
using Lemma 1.

5 Examples of goodness-of-fit tests for NHPP

models

So far we have been concerned with the problem of conditional sampling of
realizations for particular NHPP models, assuming that the test statistic Z is
given. In practical goodness-of-fit testing, the first task might instead be to
select a relevant test statistic Z = Z(T ) with the ability to detect departures
from an assumed parametric NHPP model. In this section we present some
examples of such test statistics, all based on a useful transformation of the
observed data to be presented first.

Consider an NHPP with intensity function λ(t) and cumulative intensity
function Λ(t) =

∫ t
0 λ(u)du. If T1, T2, . . . are the successive event times of

the NHPP, then Λ(T1),Λ(T2), . . . is a homogenous Poisson process with unit
intensity. Suppose that the NHPP is observed on the time interval [0, τ ].
Then, conditional on N(τ) = n, the transformed times Vj = Λ(Tj)/Λ(τ)
for j = 1, . . . , n are distributed as the order statistic U(1), . . . , U(n) of n i.i.d.
variables with distribution U [0, 1].

If Λ̂(·) is an estimate of Λ(·) based on the observation T in (1), then
we shall define estimated transformed times V̂1, . . . , V̂n by V̂j = Λ̂(Tj)/Λ̂(τ).
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Since these appear as estimates of ordered uniform variables, it is tempting
to use well-known goodness-of-fit tests for the uniform distribution to suggest
goodness-of-fit test statistics for parametric NHPP-models based on the V̂j.
This is, for example, the approach of Baker [2], Park and Kim [5], and Zhao
and Wang [12].

5.1 The power law case

It was pointed out by Baker [2] that, for the power law process, the estimated
transformed times V̂j, based on maximum likelihood estimates are pivots, in
the sense that they have distributions which do not depend on the unknown
parameters a, b.

To see this, note that in this situation we have

Vj = (Tj/τ)b; j = 1, ..., n. (12)

The maximum likelihood estimate b̂ based on the observation T can be found
by maximizing the likelihood (4), and is given by

b̂ =
−n∑n

j=1 log Tj − n log τ
(13)

(see Crowder et al. [14, p. 171]).
Now use the relation (12) and the representation Vj = U(j) where the U(j)

are the orderings of i.i.d. variables in U [0, 1], to arrive at the representation

Tj = τU
1/b
(j) . From this we can write the estimated transformed times V̂j as

V̂j = (
Tj
τ

)b̂ = U
b̂
b

(j) = U
−n/

∑n

j=1
logUj

(j) ; j = 1, ..., n, (14)

where we have used (13) to get b̂ = −nb/∑n
j=1 logUj. Now (14) does not

involve the parameters a, b, and can therefore be simulated by means of a
sample U1, . . . , Un from U [0, 1]. The V̂j are hence pivots as announced.

Baker [2] studied a class of score tests based on the V̂j. Note that since

the V̂j are pivots (in the power law case), we can compute the unconditional

probabilities PH0(Z ≤ zobs) for test statistics based on the V̂j by simulation.
But note that in general a goodness-of-fit statistic need not be a function of
the V̂j, in which case we may need to base ourselves on conditional samples
using Lemma 1, also for the power law case.
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5.2 The log-linear law case

In this case the Vj are given by Vj = (ebTj − 1)/(ebτ − 1) for j = 1, ..., n. The

maximum likelihood estimate b̂ is found by solving the equation

n∑
j=1

Tj +
n

b
− nτ(

1

1− e−bτ
) = 0 (15)

with respect to b. This follows from (6) or from Crowder et al. [14, p. 167].
No closed form expression for b̂ exists, however.

The estimated transformed times V̂j now become

V̂j =
eb̂Tj − 1

eb̂τ − 1
; j = 1, ..., n.

In contrast to the power law case, the distributions of the V̂j depend on the
parameter b and we can hence not simulate the distribution of a test statistic
based on the V̂j unconditionally as for the power law case. Goodness-of-fit

tests using the V̂j will therefore always be conditional tests in our approach.

5.3 Test statistics

We present as illustration five different test statistics based on the V̂j. For
simplicity we put N(τ) = n in the formulae.

Laplace statistic (Zhao and Wang [12])

L =

√
12

n

n∑
j=1

(V̂j −
1

2
). (16)

This is a two-sided test statistic and the null hypothesis of NHPP is rejected
for either too small or too large values.

Greenwood statistic (Baker [2])

G =
n+1∑
j=1

(V̂j − V̂j−1)
2, (17)

where V̂n+1=1 and V̂0=0. This is a two-sided test statistic and the null
hypothesis of NHPP is rejected for either too small or too large values.
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Modified Cramer-von Mises statistic (Park and Kim [5])

W 2 =
n∑
j=1

[V̂j −
(2j − 1)

2n
]2 +

1

12n
.

Modified Anderson-Darling statistic (Park and Kim [5])

A2 = −{
n∑
j=1

(2j − 1)[log V̂j + log(1− V̂n+1−j)]}/n− n.

Modified Kolmogorov-Smirnov statistic (Park and Kim [5])

D = max [D+, D−],

where

D+ ≡ max
1≤j≤n

(
j

n
− V̂j), D− ≡ max

1≤j≤n
(V̂j −

(j − 1)

n
)

The last three test statistics are versions of traditional goodness-of-fit
statistics for distributions. The corresponding tests reject the null model for
large values of the statistic.

6 Processes with failure censoring

Assume in this section that a repairable system is observed until a prespec-
ified number of events, say n. The following modifications need to be done
in the methods considered so far, which all assume time censoring.

First, the data can now be described simply as T = (T1, . . . , Tn), while
the likelihood function (2) becomes

n∑
j=1

log λ(Tj)−
∫ Tn

0
λ(u)du. (18)

For the power law case this becomes

lp(a, b) = n(log a+ log b) + (b− 1)
n∑
j=1

log Tj − aT bn,

which should be compared to (4). It is hence seen that the sufficient statistic
can be given as

Sp(T ) = (Tn,
n−1∑
j=1

log Tj).
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Similarly, it can be shown that the sufficient statistic in the log-linear law
case is

S`(T ) = (Tn,
n−1∑
j=1

Tj).

Thus, all the information on the parameters are now in the last failure
time, Tn, and in the sum of the (logs) of the (n− 1 first) observations.

The conditional simulation recipes from Section 4 can be modified using
the result (e.g. Ross [17]) that, conditionally on Tn = tn, the event times
T1, T2, . . . , Tn−1 of an HPP(1) are distributed as the ordering of n − 1 i.i.d.
random variables distributed as U [0, tn].

Comparing with the corresponding result used in Section 4, this means
that conditional simulations given the sufficient statistics can be performed
as for the time-censored case, with τ replaced by tn, and with the number of
simulated values reduced from n to n− 1.

As regards maximum likelihood estimation of b, looking at the likelihood
function (18), it is seen that we can use the same expression for the maximum
likelihood estimator b̂ as for the time-censored cases, just replacing τ by tn.

Consider finally the definition and computation of the transformed times
Vj and V̂j. These are now defined as

Vj = Λ(Tj)/Λ(Tn); j = 1, . . . , n− 1, (19)

which for the power law case lead to Vj = (Tj/Tn)b. It can be shown that the

estimated ones, given by V̂j = (Tj/Tn)b̂, can be represented by an expression
similar to (14), namely

V̂j = (
Tj
Tn

)b̂ = U
b̂/b
(j) = U

−n/
∑n−1

j=1
logUj

(j) ; j = 1, ..., n

for a sample U1, . . . , Un−1 from U [0, 1].
The V̂j in the log-linear law case are found from (19) to be

V̂j =
eb̂Tj − 1

eb̂Tn − 1
; j = 1, ..., n− 1,

where b̂ is the maximum likelihood estimator obtained by solving (15) for b
when τ is replaced by Tn.

7 Application and simulations

7.1 Data example (Leitch [1])

We apply the results to the data from Leitch [1], presented in the Introduc-
tion. Since there is no information beyond the last failure time 8245, we
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assume failure censoring in the following.
Let us first check whether the data are consistent with a power law NHPP,

using some of the test statistics presented in Section 5. Recall that for the
power law, we are able to simulate unconditionally the distribution of all
statistics based on the V̂ .

We first apply the Greenwood statistic (17) and calculate its value gobs =
0.1263 for the observed data. Then we simulate the distribution of G. This
is done by simulating 100.000 samples of {V̂j} from (14) and each time com-
puting the statistic G. We then get the upper histogram in Figure 1, where
we have also marked the observed value gobs based on the original data. The
resulting p-value is found to be 0.0487 (corresponding to twice the tail to the
left of the observed value since the test based on G is two-sided). Hence the
Greenwood statistic implies evidence against the power law assumption for
the reliability growth data.

We now do the corresponding analyses using, for illustration, the Cramer
von Mises test and the Kolmogorov-Smirnov test (see Section 5). The results
are given, respectively, in the middle and lower plots in Figure 1, together
with the calculated test statistics and corresponding p-values.

Neither of the two last tests give any evidence against power law NHPP,
and the observed p-values in fact deviate remarkably from the p-value of
the Greenwood test. This leads to the question of why this difference from
the Greenwood test is observed? In order to answer this question we shall
take a closer look at the test statistics, see the discussion at the end of this
subsection.

Let us next check whether the data are consistent with a log-linear law
NHPP. We did 1.000.000 iterations using the Gibbs algorithm of Section 4,
each time computing the value of the test statistic. To have comparable scales
on the plots of power law and log-linear law, we used every 10th value of the
simulated test statistics to draw the histogram. The resulting histograms are
in Figure 2. Note, however, that the simulations are now conditional on the
sufficient statistic.

The most remarkable difference to the power law case is that the (con-
ditional) p-value for the Greenwood statistic is higher for the log-linear law
model, thus not suggesting departure from this NHPP model. The (condi-
tional) p-values for the Cramer von Mises and Kolmogorov-Smirnov statistics
are lower than for the power law case, but still high.

Figure 3 shows the transformed times V̂j for the power law and the log-
linear law, respectively. Comparing these with samples from i.i.d. uniforms,
the points are remarkably regularly positioned. The Greenwood statistic can
be shown to have its minimum value when the V̂j are evenly spread out.
This probably explains the low observed value of G for these data. In fact,
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Figure 1: Reliability growth data: Simulated distributions of test statis-
tics for power law NHPP (unconditional distributions). Upper curve is for
Greenwood statistic G; middle curve is for Cramer von Mises statistic W 2;
lower curve is for Kolmogorov-Smirnov statistic D. Observed values of test
statistics are marked with vertical bar.
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Figure 2: Reliability growth data: Simulated distributions of test statistics
for log-linear NHPP (conditional distributions). Upper curve is for Green-
wood statistic G; middle curve is for Cramer von Mises statistic W 2; lower
curve is for Kolmogorov-Smirnov statistic D.Observed values of test statistics
are marked with vertical bar.
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Figure 3: Reliability growth data: Transformed times V̂ computed from the
power law (upper plot) and the log-linear model (lower plot).

Figure 3 also indicates why the value of G is higher in the log-linear case,
since the regularity is apparently a bit less pronounced there. On the other
hand, the Cramer von Mises and Kolmogorov-Smirnoff statistics, by their
definition, will be small when the V̂j are regularly positioned, since then the

empirical distribution of the V̂j is close to the distribution of U [0, 1]. This is
believed to explain the high p-values for the corresponding tests.

7.2 A simulation study

The somewhat unexpected behavior of the Cramer von Mises test in situ-
ations as the one considered in the above example was noted by Baker [2],
who concluded that this test has low power against certain violations of the
NHPP property itself (here revealed as the “regularity” mentioned in the
example). This behavior motivated the small simulation study presented in
the following.

Table 1 shows the result of a simulation of several goodness-of-fit tests
when the alternative is a non-NHPP process. 100.000 data sets are simulated,
with failures following a renewal process until n = 10 failures. The distribu-
tion of the inter-failure times is Weibull with scale parameter 1 and varying
shape parameter α, i.e. a distribution with survival function exp{−tα}. Ta-
ble 1 shows the relative number of rejections (power) for testing the null
hypothesis that the data come from a power law NHPP using the tests from
Section 5. We first note that all tests have power close to the chosen sig-
nificance level 0.05 when α = 1, i.e. when we have an HPP and hence a
power law NHPP. This should of course be so since we consider exact tests.
It is remarkable, however, that all the tests, except the Greenwood test, have
power decreasing with α, which leads to powers less than 0.05 for alternatives
with α > 1. (This problem is already noted in [2] for the Cramer von Mises
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Laplace Greenw Cramer v M And-Darl Kolm-Smir
α L G W 2 A2 D

0.25 0.4787 0.8427 0.6841 0.8379 0.7063
0.50 0.2726 0.4543 0.3430 0.4625 0.3713
0.75 0.1250 0.1396 0.1321 0.1678 0.1444

1 0.0500 0.0496 0.0497 0.0506 0.0502
1.25 0.0189 0.0804 0.0208 0.0151 0.0178
1.50 0.0070 0.1708 0.0081 0.0046 0.0055
1.75 0.0027 0.3074 0.0034 0.0014 0.0018

2 0.0011 0.4636 0.0013 0.0006 0.0005

Table 1: Power of goodness-of-fit tests of the null hypothesis of power law
NHPP for n = 10 failure censored times and significance level 0.05, when
data come from a Weibull renewal process with shape parameter α.

test). The Greenwood test is on the other hand able to detect alternatives
with α > 1, and is together with the Anderson-Darling test the best to detect
alternatives with α < 1.

Table 2 is included to show a different behavior of the test statistics when
the alternative to power law NHPP is an NHPP with another parametric
form, here with intensity function λ(t) = αβ/(1+βt) for parameters α, β > 0.
This is called the Musa-Okumoto model (see e.g. [12]). Again 100.000 data
sets are simulated. We first note that all tests have a power which decreases
with α. This is intuitively so because the process comes closer and closer to
an HPP as α increases. Indeed, we can see that the powers are close to 0.05
when α = 1000, which is presumably a case close to an HPP. A remarkable
difference from Table 1 is of course that the Greenwood statistic now has very
low power throughout, while the three last test statistics apparently are the
best ones to detect alternatives to power law NHPP which are still NHPPs,
but have a different intensity function.

7.3 Exact tests versus asymptotic tests

As already mentioned, a main motivation for deriving and using exact tests
comes from the fact that critical values for tests based on asymptotics may
be misleading. We may exemplify this by considering the goodness-of-fit
test based on the Laplace statistic considered by Zhao and Wang [12]. The
asymptotic test rejects the null hypothesis of a power law NHPP if |L| >
zα/2/2 (see [12]). This is valid for large n only, however. We found in fact
by simulation that for data from an HPP (and hence a power law NHPP)
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Laplace Greenw Cramer v M And-Darl Kolm-Smir
α L G W 2 A2 D

0.1 0.2908 0.0625 0.3884 0.3314 0.3156
0.5 0.2722 0.0615 0.3648 0.3080 0.2979
1 0.2387 0.0595 0.3211 0.2654 0.2674
2 0.1656 0.0555 0.2324 0.1847 0.1998
3 0.1242 0.0519 0.1780 0.1399 0.1574
5 0.0812 0.0503 0.1196 0.0937 0.1108
10 0.0579 0.0494 0.0817 0.0668 0.0780

1000 0.0511 0.0490 0.0518 0.0512 0.0524

Table 2: Power of goodness-of-fit tests of the null hypothesis of power law
NHPP for n = 10 failure censored times and significance level 0.05, when data
come from the Musa-Okumoto NHPP with parameters β = 1 and varying
parameter α.

with n = 10 we obtain a power of 0.14 when the nominal level was set to
α = 0.05.

We also computed the Laplace-statistic for the reliability growth data
considered in the example of Section 7.1, and simulated the distribution of
L for a power law NHPP with n = 10, in order to compute the p-value (see
Figure 4). The figure shows that the distribution of L is far from normal
for n = 10 (skew to the right). This explains the large difference between
the nominal level and actual rejection probability when data come from an
HPP, as reported above. In fact, for n = 10 and significance level 0.05 the
asymptotic Laplace test would reject for |L| > 0.98, which looks unreasonable
from Figure 4. Instead, cutting off 2.5% on each side of the histogram in
Figure 4 gives the correct critical values -1.27 and 0.68.

8 Concluding remarks

The present paper advocates the use of exact goodness-of-fit tests for para-
metric NHPP models and suggests that such tests can be derived by condi-
tioning test statistics on a sufficient statistic under the null hypothesis model.
Concrete recipes for how to do this are given for the power law and log-linear
law cases. For other models, it may or may not be straightforward to follow
similar procedures. We give below some relevant references to the literature.

Lee [13] considered a parametric NHPP model with both the power law
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Figure 4: Reliability growth data: Simulated distribution of the Laplace
test statistic L for power law NHPP, with observed value of L marked with
vertical bar.

and log-linear law as special cases, given by the intensity function

λL(t) = abtb−1ect.

This intensity function can be both increasing, decreasing or a combination
of the two. Lee’s idea was that, by adding a parameter to the power law
or log-linear law models, a more flexible model could be obtained, with an
important feature being to use the new model to derive goodness-of-fit tests
for the power law and log-linear law cases, by testing respectively the null
hypotheses c = 0 and b = 1.

However, one may also want to test the null hypotheses that λL is the
true intensity function. In this case, the sufficient statistic for data T as in
(1) is

SL(T ) = (N(τ),
N(τ)∑
j=1

Tj,
N(τ)∑
j=1

log Tj).

Following the same kind of reasoning as in Section 4, the challenge is now to
sample n uniforms on [0, τ ] given both their sum and the sum of the logs. We
will not go into details here about how this can be done, but the case is quite
similar to the case of conditional sampling in gamma models, as studied by
Lockhart et al. [18]. The difference is that, while we consider conditional
samples of uniforms, they consider conditional samples from exponential dis-
tributions.

The Gibbs sampling method used in Section 4 will presumably work in
rather general situations. It should be noted that parametric NHPP models
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usually contain a scale parameter, like the parameter a in the power law case.
The idea of first conditioning on N(τ) = n should then be recommended
generally, since it leads to the elimination of this scale parameter.

More general approaches to conditional sampling given sufficient statistics
are found in Lindqvist and Taraldsen [22] and Lockhardt et al. [18]. The
methods given there may well be applied to a large class of NHPP models.
Note also, that Lindqvist and Taraldsen [22] study the problem of conditional
sampling of uniforms given their sum, using another type of algorithm than
the one considered in the present paper.

We would finally like to mention that, if one relaxes the requirement of
exactly computed p-values, but finds that asymptotic theory does not give
satisfactory answers, then parametric bootstrapping is a powerful tool. The
basic idea is then to simulate samples from the null hypothesis model by sub-
stituting parameter values estimated under the null hypothesis assumption.
A short discussion of this is given in Lockhart et al. [18].
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