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MOTIVATION

e Suppose (714,01),(15,85),... is a set of (possibly)
censored i.i.d. exponential lifetimes
from distribution E()).

e Let § be censoring indicator, independent censoring.

e For example, 61 = 1,00 =0,63=1,...

e Then Sq,5o,... IS a homogeneous Poisson-process
(HPP)
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S1,S2,...is an HPP ...
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SIMPLE APPLICATIONS

e Derive standard (x2-based) confidence interval for
rate of exponential distribution, ).

e Sort (11,61),(15,6>),...according to some secondary
variable (e.g. covariate) to see whether there is an
unwanted/unexpected trend (implying deviations from
HPP).



APPLICATION IN COX-REGRESSION

MODEL: Hazard function

a(tlz) = ag(t) exp(8 'z)
BASIC RESULT for lifetime Z
Ag(Z)exp(B'X) ~ E(1) given X

(Ao(t) = [ ao(w)du).

COX-SNELL RESIDUALS
fOI’ data (T]_, 51, X]_), MR (Tn, 5n, Xn)

—~ T A~/ .
T = AO(TZ) exp(ﬁ Xz)r 1 = 1,...,72,

(71,61),...,(7n,d6n) Should behave like a censored
sample from E(1).



EXPONENTIAL REGRESSION MODEL

o / = lifetime, C = censoring time, X = covariate
vector

ASSUMPTIONS
e ZIX =z is E(\(x)), i.e. has density A(z)e M@t
e C|X = x has density fo(t|x)
e / (' are independent given X

AIM

e Estimate A(x) from sample of (7,6, X)
where T =min(Z,C), § = I(Z < C)



COVARIATE ORDERING
(single continuous covariate)

Order data (714,61, X1), -, (Tn,0n, Xn)

with X1§X2§§Xn

COVARIATE ORDER PROCESS

Point process Sq,S5,... formed by successive (1/n)T;,
with events defined at end of uncensored (1/n)T;.
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COVARIATE ORDER ESTIMATOR

1 1 1 1

nil nl2 ni3 nin
0 Sq S So S
Conditional intensity of process S, S55,... is

p(s) = nA(X(s))
where X (s) is the x corresponding to the time T; under
"risk’” at s.

STEP 1: Estimate p(s) by ordinary kernel estimator

1 2"’“': . (s — SZ-)
nhs i=1 hs

(or possibly another (sub)density estimator).

p(s) =




STEP 2: Invert relation p(s) = nA(X(s)) to get
Az) = p(5(x))

where s(x) is the s " corresponding to" =x.

In practice: The correspondence function 5(x) is ob-
tained by some smooth of the points (37 T3, X;), 1 =

1l,...,n.
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THEOREM

Let K(-) be a positive kernel function and let A be a
smoothing parameter which may depend on . Then
the estimator

is a uniformly consistent estimator of A(x).
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EXAMPLE — CARDIAC ARREST

Times of out-of-hospital cardiac arrests reported to a
Norwegian hospital over a 5 years period.

/Z = inter-event times, X = temperature.

Correspondence function
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COX-SNELL RESIDUALS
fOI’ data (T]_, 5]_, X]_), MR (Tn, 5n, Xn)

~ ~ A/ .
T, = Ao(TZ) exp(ﬁ Xz')r 1 = 1,...,n

Under correct model: (71,61),...,(rn,d0n) behave like
censored sample from E(1).

RESIDUAL PLOTS

For each single covariate X, apply covariate order method
to

(,;:17 517X1]<:)7 SRR (';;Th 5717Xnk)7

where X;;. is the kth covariate for the :th observation
unit.
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EXAMPLE - RESIDUAL PLOTS FOR PBC-DATA

Estimated log(A(x)) for Cox-Snell residuals vs covari-
ates x =bilirubin and x = log(bilirubin), respectively.

P-value from Anderson-Darling test for the null hypoth-
esis of constant hazard function.

p-value=2e-6 p-value=0.22
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OTHER RESIDUAL PLOTS FOR PBC-DATA

p-value=0.76 p-value=0.44

log(lambda(age))
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EXAMPLE - FUNCTIONAL FORM FOR
COVARIATES IN PBC-DATA

BASIC RESULT (single covariate):
Ag(Z) exp(BX) ~ E(1) given X.

This implies Ag(Z) ~ E(exp(8X))

Use covariate order method to data (Aq(T}),6;, X,z) to
suggest functional form for kth covariate.

Plots of log-hazards - straight line implies functional
form exp(Bx):

p-value=1.2e-6 p-value=0 p-value=0
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SEVERAL COVARIATES

Generalization to several covariates is not immediate
without imposing structure

GENERALIZED ADDITIVE MODEL

)\(m) — ea+91($1)‘|‘,---,+9m(azm)

g1(),...,gm(-) estimated iteratively (backfitting)

Basic result:

T~ E(ea+g1(x1)+-..—|—gm(afm))
J

70t g1(z1)+. +gj—1(zj—1)+gj+1(zj4 1)+ Fgm(Tm) E(egj(fﬂj))_
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CONCLUSIONS - COVARIATE ORDER METHOD
e Covariate order method is simple and intuitive
e It is easy to use with existing software

e Method is flexible due to ‘free’” choice of density estimation
method

e Applicable to non-exponential lifetime models (e.g. Cox-regression)
by transformation.

e Simulations indicate that method is competitive w.r.t. com-
peting methods, for example local likelihood methods, in par-
ticular for high censoring and few observations.
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THEOREM 1

Assume that
O<a<inf AMz) <supA(z) <M <
reX xEX

and that sup,cx N(xz) < D < co. Further assume that
the conditional distribution of C given x has finite first
and second order moments and that f-(t|x) has bounded
first derivative in x for all x € X. Then

pn(s|FI) /n = M(n(s))

as n — oo uniformly in s, where n(s) is a determinis-
tic function from the s-axis to the covariate axis, the
inverse of which is given by

s(x) =E(TI(X <ux)).
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THEOREM 2

Let K(-) be a positive kernel function which vanishes
outside [-1,1] and has integral 1, and let hs be a smooth-
ing parameter which is either constant or varying along
the s-axis. Assume that hs — 0 as n — oo for all s.
Further assume that there is a sequence h, such that
hs > hyp for all s,n where nh, — o0 as n — oco. Then the
estimator

Na) = iK(g(x)_Si> T CX

nhs i=1 hs

is a uniformly consistent estimator of A(z).
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