Workshop on Semiparametric Models and Applications In Honor of Professor Catherine Huber-Carol Mont Saint Michel, France, May 15-17, 2003

The Covariate Order Method for Nonparametric Exponential Regression and Some Applications in Other Lifetime Models

Bo Lindqvist

Department of Mathematical Sciences, Norwegian University of Science and Technology, Trondheim

> bo@math.ntnu.no http://www.math.ntnu.no/~bo/

Joint work with Jan Terje Kvaløy, Stavanger University College, Norway

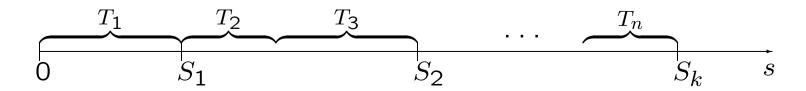
MOTIVATION

• Suppose $(T_1, \delta_1), (T_2, \delta_2), \ldots$ is a set of (possibly) censored *i.i.d.* exponential lifetimes from distribution $E(\lambda)$.

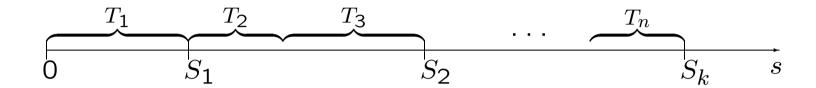
• Let δ be censoring indicator, independent censoring.

• For example, $\delta_1 = 1, \delta_2 = 0, \delta_3 = 1, ...$

• Then S_1, S_2, \ldots is a homogeneous Poisson-process (HPP)



 S_1, S_2, \dots is an HPP ...



SIMPLE APPLICATIONS

- Derive standard (χ^2 -based) confidence interval for rate of exponential distribution, λ .
- Sort $(T_1, \delta_1), (T_2, \delta_2), \ldots$ according to some secondary variable (e.g. covariate) to see whether there is an unwanted/unexpected trend (implying deviations from HPP).

APPLICATION IN COX-REGRESSION

MODEL: Hazard function

$$\alpha(t|x) = \alpha_0(t) \exp(\beta' x)$$

BASIC RESULT for lifetime Z

$$A_0(Z)\exp(oldsymbol{eta}' oldsymbol{X}) \sim \mathsf{E}(1)$$
 given $oldsymbol{X}$

$$(A_0(t) = \int_0^t \alpha_0(u) du).$$

COX-SNELL RESIDUALS

for data $(T_1, \delta_1, X_1), \cdots, (T_n, \delta_n, X_n)$

$$\hat{r}_i = \hat{A}_0(T_i) \exp(\hat{\boldsymbol{\beta}}' \boldsymbol{X}_i), i = 1, \dots, n$$

 $(\hat{r}_1, \delta_1), \dots, (\hat{r}_n, \delta_n)$ should behave like a censored sample from E(1).

EXPONENTIAL REGRESSION MODEL

ullet Z= lifetime, C= censoring time, ${m X}=$ covariate vector

ASSUMPTIONS

- \bullet Z|X=x is $\mathsf{E}(\lambda(x))$, i.e. has density $\lambda(x)e^{-\lambda(x)t}$
- ullet C|X=x has density $f_C(t|x)$
- ullet Z,C are independent given $oldsymbol{X}$

AIM

• Estimate $\lambda(x)$ from sample of (T, δ, X) where $T = \min(Z, C)$, $\delta = I(Z \leq C)$

COVARIATE ORDERING

(single continuous covariate)

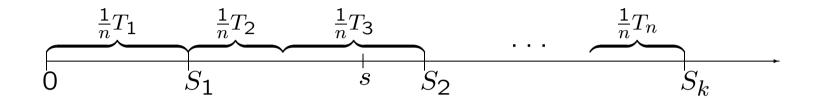
Order data $(T_1, \delta_1, X_1), \cdots, (T_n, \delta_n, X_n)$

with
$$X_1 \leq X_2 \leq \cdots \leq X_n$$

COVARIATE ORDER PROCESS

Point process $S_1, S_2, ...$ formed by successive $(1/n)T_i$, with *events* defined at end of uncensored $(1/n)T_i$.

COVARIATE ORDER ESTIMATOR



Conditional intensity of process S_1, S_2, \ldots is

$$\rho(s) = n\lambda(X(s))$$

where X(s) is the x corresponding to the time T_i under "risk" at s.

STEP 1: Estimate $\rho(s)$ by ordinary kernel estimator

$$\widehat{\rho}(s) \equiv \frac{1}{nh_s} \sum_{i=1}^{k} K\left(\frac{s - S_i}{h_s}\right)$$

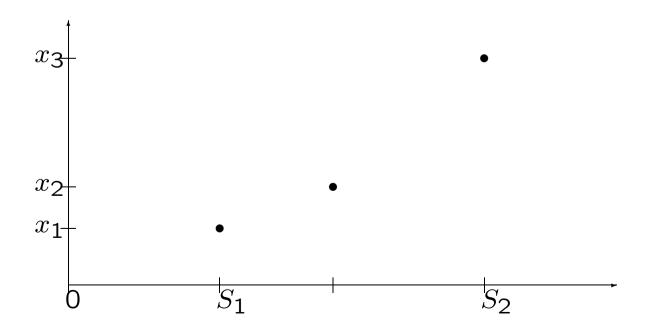
(or possibly another (sub)density estimator).

STEP 2: Invert relation $\hat{\rho}(s) = n\hat{\lambda}(X(s))$ to get

$$\hat{\lambda}(x) = \hat{\rho}(\hat{s}(x))$$

where $\hat{s}(x)$ is the s "corresponding to" x.

In practice: The *correspondence function* $\widehat{s}(x)$ is obtained by some smooth of the points $(\sum_{i=1}^{m} T_i, X_i)$, $i = 1, \ldots, n$.



THEOREM

Let $K(\cdot)$ be a positive kernel function and let h be a smoothing parameter which may depend on x. Then the estimator

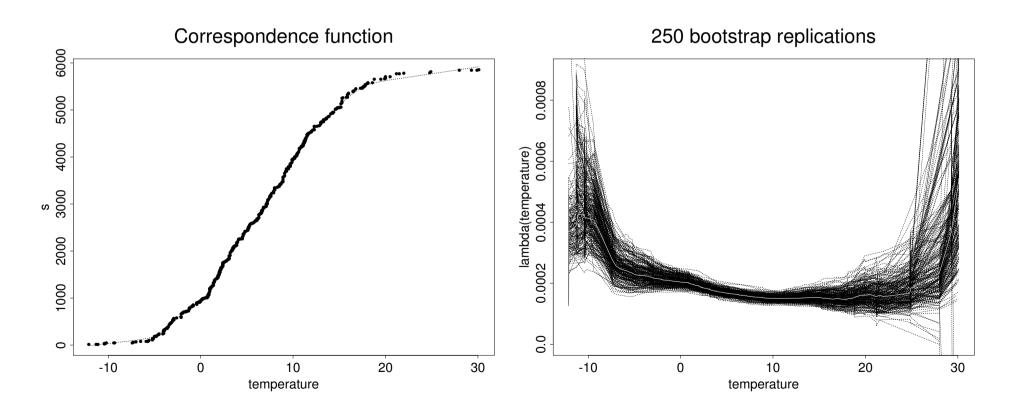
$$\widehat{\lambda}(x) = \frac{1}{nh} \sum_{i=1}^{r} K\left(\frac{\widehat{s}(x) - S_i}{h}\right) \; ; \; x \in \mathcal{X}$$

is a uniformly consistent estimator of $\lambda(x)$.

EXAMPLE - CARDIAC ARREST

Times of out-of-hospital cardiac arrests reported to a Norwegian hospital over a 5 years period.

Z = inter-event times, X = temperature.



COX-SNELL RESIDUALS

for data $(T_1, \delta_1, X_1), \cdots, (T_n, \delta_n, X_n)$

$$\hat{r}_i = \hat{A}_0(T_i) \exp(\hat{\boldsymbol{\beta}}' \boldsymbol{X}_i), i = 1, \dots, n$$

Under correct model: $(\hat{r}_1, \delta_1), \dots, (\hat{r}_n, \delta_n)$ behave like censored sample from E(1).

RESIDUAL PLOTS

For each single covariate X_k , apply covariate order method to

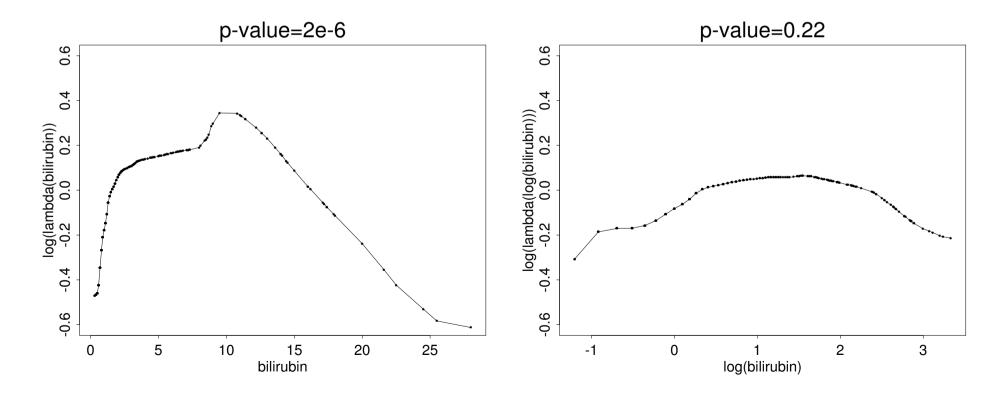
$$(\hat{r}_1, \delta_1, X_{1k}), \ldots, (\hat{r}_n, \delta_n, X_{nk}),$$

where X_{ik} is the kth covariate for the ith observation unit.

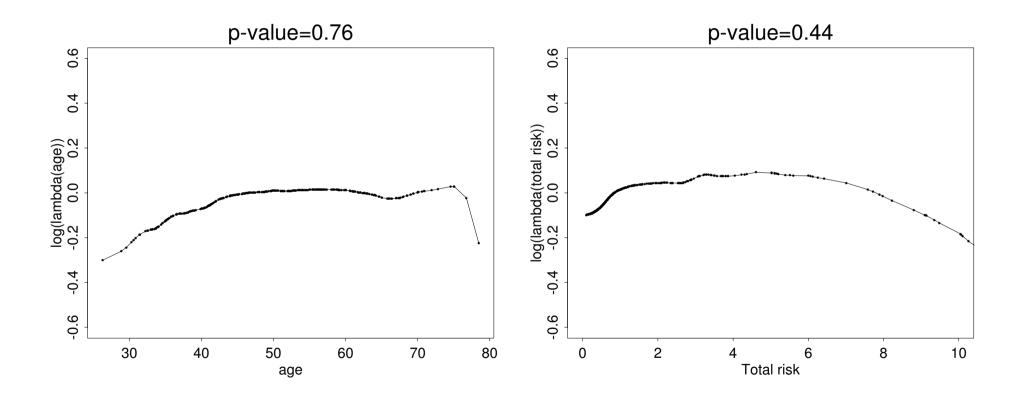
EXAMPLE - RESIDUAL PLOTS FOR PBC-DATA

Estimated $log(\lambda(x))$ for Cox-Snell residuals vs covariates x = bilirubin and x = log(bilirubin), respectively.

P-value from Anderson-Darling test for the null hypothesis of constant hazard function.



OTHER RESIDUAL PLOTS FOR PBC-DATA



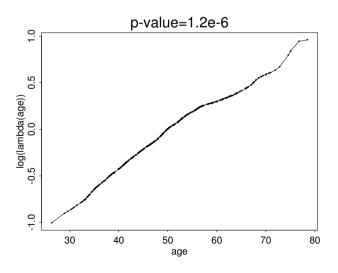
EXAMPLE - FUNCTIONAL FORM FOR COVARIATES IN PBC-DATA

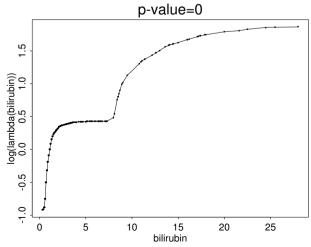
BASIC RESULT (single covariate): $A_0(Z) \exp(\beta X) \sim E(1)$ given X.

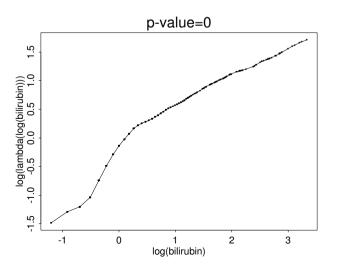
This implies $A_0(Z) \sim \mathsf{E}(\exp(\beta X))$

Use covariate order method to data $(\widehat{A}_0(T_i), \delta_i, X_{ik})$ to suggest functional form for kth covariate.

Plots of log-hazards - straight line implies functional form $\exp(\beta x)$:







SEVERAL COVARIATES

$$X = (X_1, \dots, X_m)$$

Generalization to several covariates is not immediate without imposing structure

GENERALIZED ADDITIVE MODEL

$$\lambda(x) = e^{\alpha + g_1(x_1) + \dots + g_m(x_m)}$$

 $g_1(\cdot), \ldots, g_m(\cdot)$ estimated iteratively (backfitting)

Basic result:

$$Z \sim \mathsf{E}(e^{\alpha + g_1(x_1) + \dots + g_m(x_m)})$$
 \downarrow

$$Ze^{\alpha+g_1(x_1)+...+g_{j-1}(x_{j-1})+g_{j+1}(x_{j+1})+...+g_m(x_m)} \sim E(e^{g_j(x_j)}).$$

CONCLUSIONS - COVARIATE ORDER METHOD

- Covariate order method is simple and intuitive
- It is easy to use with existing software
- Method is flexible due to "free" choice of density estimation method
- Applicable to non-exponential lifetime models (e.g. Cox-regression) by transformation.
- Simulations indicate that method is competitive w.r.t. competing methods, for example local likelihood methods, in particular for high censoring and few observations.

LITERATURE

Nonparametric lifetime regression:

Hastie and Tibshirani (book, 90)

Clayton & Cuzick (JRSS 85)

Staniswalis (JASA 89)

Gentleman & Crowley (BIOMCS 91)

Diagnostic plots for model checking in PH models:

Arjas (JASA 88)

Grambsch, Therneau & Fleming (BIOMCS 95)

Therneau & Grambsch (book, 00)

Covariate order method

Kvaløy (LDA 02)

Kvaløy & Lindqvist (Comp Stat 03)

Kvaløy & Lindqvist (Workshop and book)

THEOREM 1

Assume that

$$0 < a \le \inf_{x \in \mathcal{X}} \lambda(x) \le \sup_{x \in \mathcal{X}} \lambda(x) \le M < \infty$$

and that $\sup_{x \in \mathcal{X}} \lambda'(x) \leq D < \infty$. Further assume that the conditional distribution of C given x has finite first and second order moments and that $f_C(t|x)$ has bounded first derivative in x for all $x \in \mathcal{X}$. Then

$$\rho_n(s|\mathcal{F}_s^n)/n \xrightarrow{p} \lambda(\eta(s))$$

as $n \to \infty$ uniformly in s, where $\eta(s)$ is a deterministic function from the s-axis to the covariate axis, the inverse of which is given by

$$s(x) = \mathsf{E}(TI(X \le x)).$$

THEOREM 2

Let $K(\cdot)$ be a positive kernel function which vanishes outside [-1,1] and has integral 1, and let h_s be a smoothing parameter which is either constant or varying along the s-axis. Assume that $h_s \to 0$ as $n \to \infty$ for all s. Further assume that there is a sequence h_n such that $h_s \geq h_n$ for all s, n where $nh_n \to \infty$ as $n \to \infty$. Then the estimator

$$\widehat{\lambda}(x) = \frac{1}{nh_s} \sum_{i=1}^r K\left(\frac{\widehat{s}(x) - S_i}{h_s}\right) \; ; \; \; x \in \mathcal{X}$$

is a uniformly consistent estimator of $\lambda(x)$.