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ABSTRACT: We consider a monitored system with observationY (t) at timet modeled by a stochastic pro-
cess, and where system failure is connected to the exceedance of some threshold for this process. Typically, the
threshold is not exceeded under normal conditions, where the processY (t) is supposed to show some kind of
stationarity. However, due to unexpected events the process may leave the stationary behavior, in which case
an early detection of an increasingY (t) is necessary to avoid costly failures of the system. The prediction of
the timeT of future exceedance of a given threshold for the processY (t) will hence be an important issue,
and is the basic problem studied in the paper. We assume thatY (t) is a stochastic process with a probability
mechanism depending on an unobservable underlying processS(t). The latter process has a finite state space,
{0,1, . . . , k}, where state 0 corresponds to the normal stationary conditions for the processY (t), while states
1,2, . . . in increasing order means an increasing severity of the underlying conditions which eventually will
lead to system failure. In particular we consider the case whenY (t) is modeled as a Wiener process. It is then
natural to assume that the drift parameter of the process equals 0 whenS(t) = 0, while the drift is positive and
increasing withS(t), if S(t) ≥ 1. A special case withk = 1 will be considered in detail. In this case estimation
of the unobservable “switching” timeτ at which the underlying processS(t) changes from state 0 to state 1 is
of particular interest. A Bayesian approach will be used, where a Markov Chain Monte Carlo approach will be
needed for doing the computations in the most general cases.

1 INTRODUCTION

The motivating example for this paper is the mod-
eling of failure development of a bearing in an off-
shore wind turbine, and the prediction of ultimate fail-
ure based on continuous monitoring of temperature
(Brurok, Valland, Lindqvist, & Slimacek 2012).

Assume that the normal temperature of the bear-
ing under production is around 60 degrees Celsius. If
temperature increases from this level, it is therefore
an indication that a failure is developing. Such an in-
crease may for example be caused by impurities in the
oil, which in turn will lead to mechanical wear and in
the end to bearing breakdown and turbine shut down.
Early detection of the failure development is therefore
of great importance, and the aim of this paper is to
present a simple first approach to a prediction model
for such failure developments.

Several models have been devised for the situation
where the failure of a system is connected to a cer-
tain stochastic process exceeding some threshold. The
probably most popular type of stochastic processes in
such applications is the Wiener process, which may be
realistic in cases when measurements are done con-
tinuously and when the path of the measurements is

continuous. Some examples of theoretical treatments
in this connection are Whitmore (1986), Whitmore &
Schenkelberg (1997), Whitmore, Crowder, & Lawless
(1998), Lindqvist & Skogsrud (2008). Alternatively,
one may use gamma processes, which for some appli-
cations may seem more reasonble due to paths being
increasing functions of time, see Lawless & Crowder
(2004) for an application and the comprehensive re-
view paper Van Noortwijk (2009).

In the present paper, motivated by the continoously
monitored bearing temperature, we will stick to the
Wiener process as the basic modeling tool. A brief
comparison to a gamma process approach will be
given in the final section of the paper.

The rest of the paper is organized as follows. In
Section 2 we give the definition and some relevant
properties of the Wiener process. Section 3 presents
the probabilistic model for the development of the
monitored process, both under normal conditions and
after the initiation of a failure development. A sim-
plified model is considered in the final subsection,
and the practical problem of predicting the failure is
considered in Section 4, using a Bayesian approach.
Some concluding remarks are given in the final Sec-
tion 5.



2 THE WIENER PROCESS AND THE INVERSE
GAUSSIAN DISTRIBUTION

Definition 1 A stochastic process{W (t), t ≥ 0} is a
Wiener process with drift coefficientν and variance
parameterσ2 if

1. W (0) = 0,

2. {W (t), t ≥ 0} has stationary and independent
increments,

3. for everyt > 0,W (t) is normally distributed with
meanνt and varianceσ2t.

A special feature that makes the Wiener process
mathematically tractable is that if the drift parame-
ter ν is positive, then the first passage time to a level
a > 0 is inverse Gaussian distributed with density
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(Aalen & Gjessing 2001, e.g.). We denote this dis-
tribution by IG(ν, σ, a). The corresponding survival
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whereΦ is the standard normal cumulative distribu-
tion function. It should be noted that the above func-
tions depend on the parameters only viaa/σ andν/σ.
We shall, however, find it convenient to use the repre-
sentation above using the three parametersν, σ, a. We
shall also later need the expected value of the corre-
sponding distribution, which isa/ν.

3 PROBABILISTIC MODELING OF THE
MONITORED PROCESS

Let Y (t) be the monitored process, which for illus-
trative purposes we assume is the temperature of the
windturbine bearing. ThusY (t) is the measured tem-
perature at timet, observed from a starting timet= 0,
with time unit given as days, say. In order to make
probabilistic predictions we shall considerY (t) as a
stochastic process, where the aim is to predict its fu-
ture behavior from observation ofY (t) from time 0 to
some given timet0. The object of main interest is the
time when the temperature exceeds some threshold,
a.

3.1 A latent Markov process

Assume that the failure development can be con-
sidered as a sequence of distinguished stages, num-
bered as Stage 1, Stage 2, etc. In our motivating
example, these stages could be (Brurok, Valland,
Lindqvist, & Slimacek 2012); Stage 1: Impurities in

oil; Stage 2: Mechanical wear; Stage 3: Micropitting,
pitting; Stage 4: Chipping; Stage 5: Bearing break-
down; Stage 6: Turbine shut down.

The failure development defined through stages
may be modeled as a latent discrete state processS(t).
Then we letS(0) = 0 (normal condition) and letS(t)
be the failure stage number at timet. A possible prob-
abilistic model definesS(t) to be a continuous time
Markov process with finite state space{0,1, . . . , k},
wherek = 6 in the example, and time-homogeneous
transition rates. This process is particularly simple to
describe and handle under the natural assumption that
S(t) is non-decreasing.

The latent processS(t) is assumed to affect the
probability mechanism of the temperature process
Y (t) in a way such that different probability regimes
are valid under each possible state ofS(t). This will
be considered in more detail next.

3.2 The Wiener process based model forY (t)

The stochastic processY (t) will basically be modeled
as a piecewise Wiener process. The idea is that the
parametersν andσ of the underlying Wiener process
(Section 2) are allowed to vary with the state of the
latent process,S(t). It is then natural to assume that
the drift parameterν equals 0 whenS(t) = 0 (normal
conditions). Under the failure development through
Stages 1 tok, on the other hand, the drift is assumed
to be positive, with valuesνi whenS(t) = i, and with
νi increasing withi. Likewise, the variance parameter
σ may depend on the stateS(t).

It should here be noted that the independent in-
crement property of the Wiener process makes the
above described change of parameter values partic-
ularly easy to handle. More precisely, by properties
of the Wiener process, for the processY (t) will hold
that for anys < t is Y (t)− Y (s) normally distributed
with expected valueν(t− s) and varianceσ2(t− s).
Further, the differencesY (t) − Y (s) obtained from
pairwise disjoint time intervals are stochastically in-
dependent.

As already mentioned in Section 2, a feature that
makes the Wiener process mathematically tractable
is that the first passage time to a given level, assum-
ing positive drift, is inverse Gaussian distributed. This
property is unfortunately violated for the more gen-
eral model considered forY (t) due to its dependence
on the latent processS(t). We shall, however, be-
low consider a simplified, though realistic, version, in
which the inverse Gaussian distribution can still be
identified.

3.3 The Wiener process with a single change point

Assume that the temperature processY (t) from time
t = 0 follows a Wiener process started atY (0) = 60.
Further, assume that until a “switching” timeτ (the
time of entrance to Stage 1 in the bearing application)



Figure 1: The Wiener process with a single change point: Sim-
ulation of the temperature processY (t) for 0 ≤ t ≤ 5000 with
τ = 1500, σ = 0.05, ν = 0.003. Horizontal axis is time (days);
vertical axis is temperature.

there is no drift. Then from timeτ on, there is a pos-
itive drift ν. Let T be the time when the temperature
crosses a given level, saya > 0. We shall make the
simplifying assumption that even if there may be a
small probability thata is reached before timeτ , T is
always larger thanτ . More precisely we defineT as

T = inf{t > τ |Y (t) ≥ a}.
Conditional onτ and Y (τ), T − τ has an inverse
Gaussian distribution as already described. This cor-
responds to the time of hitting the thresholda− Y (τ)
for a Wiener process with driftν, starting at state 0. In
particular, the conditional expected value ofT is then
τ + (a− Y (τ))/ν, as follows from the result at then
end of Section 2.

Figure 1 shows a simulation of the processY (t)
with τ = 1500, σ = 0.05, ν = 0.003. If a = 65, say,
then the expected value ofT (i.e. time for crossing 65
degrees) will be

1500 +
65− 58

0.003
= 3833

which seems reasonable from the figure.
Alternatively, one may be interested in computing a

valuetp, say, such that, for somep close to 1,P (T >
tp) = p. This may be computed using (1).

4 A PRACTICAL ILLUSTRATION

To make a simple practical illustration, assume now
that it is known thatσ = 0.05, ν = 0.003 (these could
be based on a long time experience with similar tur-
bines). Assume also that the process has been ob-
served from time 0 to some given timet0. In the ex-
ample we will considert0 = 2500. Let the problem
be to estimate the value ofτ based on the observation
of the process from time 0 to timet0. From the esti-
mateτ̂ , say, we can then estimate the expected time
of crossing the thresholda to be

τ̂ + (a− Y (τ̂))/ν,

using the earlier result.
It follows from the above that the estimation ofτ

is of primary interest, and that interesting predictions
can be made from this.

4.1 A discrete time solution

The following is a way to solve the problem by a
Bayes approach. It is now assumed that the tem-
peratureY (i) is observed at discrete time points,
here days, i = 1,2, . . . , n. The independent incre-
ment property of the Wiener process means that
the differencesXi = Y (i + 1) − Y (i) are indepen-
dent and normally distributed. The assumptions made
above moreover imply that, for an unknown posi-
tive integer timeτ , X1, . . . ,Xτ−1 areN(0, σ2), while
Xτ ,Xτ+1, . . . ,Xn areN(ν, σ2). If τ > n, then accord-
ingly, X1, . . . ,Xn areN(0, σ2).

Following Shiryaev (1963) we shall giveτ a prior
distribution which is geometric with

π(τ) = q(1− q)τ−1 for τ = 1,2, . . . (2)

whereq is a given number. Note that then the prior
expectation ofτ is 1/q. Note also that the geometric
distribution is the discrete analogue to the exponential
distribution, and has the memoryless property. In our
case it has furthermore a reasonable interpretation if
we think ofq as the probability of a Stage 1 condition
starting at random with the same probabilityq at any
given day.

In order to obtain the posterior distribution forτ
we shall need the likelihood function for our data,
L(x1, . . . , xn|τ), which is proportional to
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if τ > n. (4)

The posterior distribution forτ is hence pro-
portional toπ(τ)L(x1, . . . , xn|τ). Multiplying L by
exp{−(1/2σ2)

∑n
i=1 x

2
i } we get the posterior distri-

bution for τ , π(τ |x1, . . . , xn), proportional toq(1 −
q)r−1 times the function which is

exp{ 1

2σ2
[2ν

n
∑

i=τ

xi − (n− τ + 1)ν2]} (5)

if τ ≤ n and 1 ifτ > n.
Figure 2 shows the non-normalized posterior dis-

tributions computed at timen = 2500. For the prior
distribution forτ in (2) was chosenq = 1/5000. It is
seen that the maximum posterior value forτ is not
far from the true valueτ = 1500 used to simulate the
data. If we are interested in the posterior expectation
for τ , we need to normalize (5) to ensure the sum over
τ to be 1. Having done this, we computed the value



Figure 2: Posterior distribution (non-normalized) forτ (horizon-
tal axis) in the simulated example in Figure 1, estimated at time
n = 2500. The prior distribution (2) forτ hasq = 1/5000.

τ̂ = 2275 for n = 2500. We did this computation also
for other values ofn, with the following results; for
n = 3000: τ̂ = 2158; for n = 5000: τ̂ = 1380. As is
natural, the estimates become better as the observa-
tion timen increases. When considering these values
it should be noted that the prior expectation forτ was
set to5000.

4.2 The continuous time solution

Suppose now that the time parameter is continuous
and thatτ > 0 is a continuous parameter. This case
can be seen as the limiting case of the discrete time
case just considered, when the discrete time unit tends
to 0. Then the geometric prior distribution forτ be-
comes the exponential distribution,

π(τ) = λe−λτ for τ > 0,

whereλ > 0 is a parameter to be given. Note that the
expected value of the prior distribution is now1/λ.

It follows, furthermore, from (5) that the posterior
distribution for an observation ofY (t) from t = 0 to
t = t0, π(τ |Y (t),0 ≤ t ≤ t0), is proportional toλe−λτ

times the function which is

exp{ 1

2σ2
[2ν(Y (t0)− Y (τ))− (t0 − τ)ν2]} (6)

if τ ≤ t0 and 1 ifτ > t0.

4.3 Markov Chain Monte Carlo (MCMC) solution

For the discrete time case considered above, we ar-
gued that a normalization is necessary for finding the
expected posterior value forτ . It should then be noted
that the normalization can not in general be done an-
alytically. In particular it is necessary to set a largest
possible value forτ .

Alternatively, one may use an MCMC solution by
for example the Metropolis-Hastings method (Gilks,
Richardson, & Spiegelhalter 1996, e.g.). There are
several possible ways here, for example using an in-
dependence sampler which draws proposals from the

prior distribution. (More efficient algorithms can of
course be thought of).

Suppose now that alsoν is an unknown parameter.
The posterior distribution for(τ, ν) is then given by
replacing the prior distribution forτ (5) (or the con-
tinuous time version (6) by the joint prior of(τ, ν),
which might be the product of their marginal priors if
they are assumed independent.

If, on the other hand, alsoσ is assumed unknown,
then the likelihood function in (3)-(4) shows that the
expressions (5) and (6) can no longer be used as short-
cuts for the posterior distribution. Still (3)-(4) multi-
plied by the prior forτ, ν, σ can be used via MCMC.
In practice it may be, however, reasonable to assume
that the value ofσ is known from long experience.
Another reasonable possibility is that whileσ has a
known value under normal conditions, this value may
change beyond the start of Stage 1. This may also be
taken into account in the model.

5 CONCLUDING REMARKS

Guérin, Barreau, Demri, Cloupet, Hersant, & Hambli
(2010) perform a Bayesian analysis of a degradation
model based on a Wiener process, related to the ap-
proach presented here.

While the Wiener process and its modifications
may be useful to model temperatures, as in the pre-
sented example, the gamma process may be a useful
alternative for the modeling of other types of moni-
tored components. A number of examples are given
by Van Noortwijk (2009).

As is the case for the Wiener process, a gamma pro-
cessX(t) has independent increments, but the incre-
mentsX(t)−X(s) are gamma-distributed with shape
parameterα(t− s) and scale parameterβ, for positive
parametersα,β.

Fouladirad, Grall, & Dieulle (2008) use a gamma
process model for a deteriorating process, where the
aim is to detect the point in time,τ , where the dete-
rioration process reaches a more severe level, defined
by new values for bothα andβ. This is similar to the
problem considered in the present paper. The cited ar-
ticle considers the detection of the change as a means
for controlling condition based maintenance.

In some cases, the states of an underlying discrete
state process like the processS(t) considered in Sec-
tion 3, are directly observable, for example at certain
inspection times. Predictions of the future behavior
of a component may then be based on these observa-
tions. The models considered by Welte & Kile (2011)
may be of interest in this connection.
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