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Abstract

Improper priors are used frequently, but often formally and without reference to a sound
theoretical basis. A consequence is the occurrence of seemingly paradoxical results. The most
famous example is perhaps given by the marginalization paradoxes presented by Stone and
Dawid (1972). It is demonstrated here that the seemingly paradoxical results are removed by
a more careful formulation of the theory.

The present paper demonstrates more generally that Kolmogorov’s (1933) formulation
of probability theory admits a minimal generalization which includes improper priors and a
general Bayes theorem. It is interesting that the resulting theory is closely related to the
theory formulated by Renyi (1970), but the initial axioms and the motivation differ.

The resulting theory includes improper priors, explains the marginalization paradoxes, and
gives conditions which ensure propriety of the resulting posteriors. These results are relevant
for the current usage of improper priors.

KEY WORDS: Marginalization, Paradox, Axioms of probability, Propriety of posterior,
Sigma-finite, Conditional

1 INTRODUCTION

Berger (1985, p.90) argues that use of non-informative improper priors represents the single most
powerful method of statistical analysis. Improper priors are indeed used frequently in Bayesian
analysis. The motivation is that they are natural choices for the expression of absence of knowledge
(Bayes, 1763; Laplace, 1812; Jeffreys, 1966). It can be viewed as an attempt at making Bayesian
analysis objective (Berger, 2006). Jeffreys (1966, p.118) argues that improper priors are necessary
from a principal point of view as the first initial prior in a chain of distributions obtained from
Bayes formula.

In certain applications it is reasonable to have an analysis which is invariant with respect to
choices of measurement scale, or more general group actions. The conclusion is then that the prior
must be a Haar measure, and this is often improper. A maximum entropy argument is sometimes
intuitively appealing, and this also tends to lead to improper priors (Jaynes, 2003; Berger, 1985).
In practical applications it may be difficult to decide on a particular prior distribution, and this
typically leads to the choice of a standard improper prior. Finally, and this is most important,
use of improper priors can be used to obtain excellent frequentist procedures (Bayard and Berger,
2004). It can be concluded that improper priors are here to stay.

The widespread use of improper priors in practice stands in strong contrast to the theoretical
treatment of improper priors in standard textbooks. Berger (1985, p.132) indicates that improper
priors can be viewed as limits of proper priors, but concludes: The resulting formal posterior
distribution cannot rigorously be considered to be a posterior distribution. The usual approach
is to do the calculations with the improper prior as if it were a proper prior. Schervish (1995,
p.20) use this approach, but notes that it is not a very precise recipe. The conclusion seems to be
that many standard textbooks in Bayesian analysis rely on the use of improper priors, but fail to
include improper priors in the fundamental description of the theory.
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This conclusion is not satisfactory from a theoretical point of view. The possible practical
consequences are perhaps even more disturbing. One example is given by the use of improper priors
in Markov chain Monte Carlo methods (Gelfand and Sahu, 1999), and a possible consequence is
that the resulting posterior is improper. Propriety of the resulting priors is a fundamental question.
Hobert and Casella (1996) discuss this in more detail with examples, and give conditions which
ensure propriety for an important class of models.

The marginalization paradoxes presented by Stone and Dawid (1972) give additional doubt
about the use of improper priors. In a discussion of the marginalization paradoxes the prominent
Bayesian D. V. Lindley concludes (Dawid et al., 1973, p.218): Clearly after tonight’s important
paper, we should use improper priors no longer. The paradoxes displayed here are too serious to be
ignored and impropriety must go. Let me personally retract the ideas contained in my own book.

The aim in the following is to present the essential ingredients in a minimal theory which
explains and avoids the problems encountered above. The easy solution is to avoid improper dis-
tributions altogether, but it turns out that improper priors can be included by a slight adjustment
of the Kolmogorov axioms. This minimal extension of the Kolmogorov theory can be viewed as a
special case of the more general theory presented by Hartigan (1983), and the results presented in
the following supplements this theory. The original marginalization paradoxes, and a more recent
example, will be presented first for further motivation and ease of reference.

2 THREE MARGINALIZATION PARADOXES

Stone and Dawid (1972) presented two most interesting marginalization paradoxes which will be
briefly presented here. A third more recent example (Berger, 2006) will also be discussed.

The reader is encouraged to consult the original presentation for further details and a supple-
mentary discussion. Dawid et al. (1973); Bernardo (1979); Kass and Wasserman (1996); Jaynes
(2003); Chang and Pollard (1997), and Bernardo and Ramon (1998) provide further references
and discussion of the marginalization paradoxes.

Example 1 Let X and Y be independent exponentially distributed variables with means λ
and µ. The parameter of interest is the ratio r = λ/µ of the means. Assume a prior distribution
π(r)drdµ, where π is a proper density. Bayes formula gives the posterior density f(r, µ |x, y), and
integration over µ gives the required posterior density: f(r |x, y) ∝ π(r)r/(r + y/x)3.

The above inference depends on the data only through the ratio z = y/x. This is intuitively
appealing, but also suggests an alternative route for the calculation. The density of z depends on
r alone, and a calculation gives f(z | r) ∝ r/(r + z)2. Combined with the prior density π this gives
the posterior density: f(r | z) ∝ π(r)r/(r + z)2.

The example is summarized by the diagram:

f(r, µ |x, y) // f(r |x, y) ∝ π(r)r/(r + z)3

f(x, y | r, µ)

π(r)drdµlllll

66lllll

z=x/y
RRRRR

((RRRRR

Which posterior for r is correct?

f(z | r, µ) = f(z | r)
π(r)dr// f(r | z) ∝ π(r)r/(r + z)2

Example 2 Let X = (X1, . . . , Xn) be a random sample from a normal distribution with mean
µ and variance σ2. The parameter of interest is the coefficient of variation v = σ/µ. Assume that
the prior distribution is the conventional right-Haar measure dµdσ/σ. A standard calculation
gives the posterior density f(v |x).

The density f(v |x) depends on the data only through the empirical coefficient of variation
z = s/x̄. This suggests that it should be possible to base the analysis directly on Z. The
distribution of Z depends only on v, and a calculation gives f(z | v) explicitly. Unfortunately,

2



f(z | v) as a function of v is not a factor of the expression calculated for f(v |x). This example
can also be summarized by a diagram:

f(µ, σ | x̄, s)
v=σ/µ // f(v | x̄, s) = f(v | z)

f(x̄, s |µ, σ)

dµdσ/σlllll

66lllll

z=s/x̄
RRRRR

((RRRRR

Which posterior for v is correct?

f(z |µ, σ) = f(z | v)
π(v)dv // f(v | z)

The conclusion is that it is impossible to find a prior density π(v) for v such that the two meth-
ods of attack give the same posterior density. The first argument gives a posterior which depends
on the observation only through z, but this posterior is not obtainable from the distribution of Z.

Example 3 Let X = (X1, . . . , Xn) be a random sample from a bivariate normal distribu-
tion with mean µ = (µ1, µ2) and 2 × 2 covariance matrix σ2. The parameter of interest is
the correlation coefficient ρ = σ2

12/(σ1σ2). Let the prior distribution be the right-Haar mea-
sure σ−2

1 (1 − ρ2)−1dµ1dµ2dσ1dσ2dρ corresponding to the triangular group. This determines the
posterior density f(ρ |x).

The density f(ρ |x) depends on the data x only through the empirical correlation r. This
suggests that it should be possible to base the analysis directly on r. The distribution of r
depends only on ρ, and a prior density π(ρ) determines f(ρ | r). Unfortunately, there exist no
prior density π(ρ) such that the two arguments give the same posterior. This holds in particular
for the natural candidate π(ρ) = (1− ρ2)−1. This example can be summarized by a diagram:

f(µ, σ, ρ |x) // f(ρ |x) = f(ρ | r)

f(x |µ, σ, ρ)

σ−2
1 (1−ρ2)−1dµ1dµ2dσ1dσ2dρlllll

55lllll

r=r(x)
SSSSS

))SSSSS

Which posterior for ρ is correct?

f(r |µ, σ, ρ) = f(r | ρ)
π(ρ)dρ // f(ρ | r)

This example is similar in principle to the previous two examples, but there are some additional
features of the posterior obtained from the first line of argument.

1. The posterior equals the fiducial distribution found by Fisher.

2. The posterior is a confidence distribution: The Bayesian credible sets give exact confidence
intervals.

These properties demonstrate that the first posterior is a natural candidate for inference. This
posterior depends only on the empirical correlation, but it is not obtainable from the distribution
of the empirical correlation and Bayes theorem.

3 KOLMOGOROV REVISITED

Williams (1991, p.23) gives the following intuitive interpretation of an experiment modeled by a
random quantity x: Tyche, Goddess of Chance, chooses an elementary event ω in Ω according to
the law P. The observed result of the experiment is x = x(ω) in Ωx. The law of the experiment
is Px.
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Different random quantities are given by different functions, but the set Ω of elementary events
with the law P is fixed. The distribution of a random quantity is defined by (Kolmogorov, 1956,
p.21)

Px(A) = P(x ∈ A) (1)

where (x ∈ A) :={ω |x(ω) ∈ A}. Mathematicians, including Kolmogorov, use the notation x−1(A)
instead of (x ∈ A). The classic book by Doob (1990) is recommended for further explanation
and motivation for the assumption of a fixed underlying probability space (Ω,P), and natural
generalizations of the notation (x ∈ A).

In Bayesian statistics the observations and the parameters are both modeled as random quan-
tities. A parameter θ is hence also a function θ : Ω→ Ωθ. This observation, or rather, choice
of definition, is the point of departure from more conventional textbook definitions. Most of the
following are simple mathematical consequences of this definition.

Assume next that the distribution of the parameter θ is improper. This means that Pθ(Ωθ) =
∞, and since this equals P(Ω) it follows that P is also unbounded.

Improper priors used in modeling are most often given by densities with respect to either a
counting measure or n-dimensional Lebesgue measure. These distributions are σ-finite, so it is
natural to assume that the prior Pθ is σ-finite. This means that Ωθ = A1 ∪ A2 ∪ · · · , where
Pθ(Ai) = P(θ ∈ Ai) < ∞. The additional observation Ω = (θ ∈ ∪iAi) = ∪i(θ ∈ Ai) gives that P
is also σ-finite.

The conclusion so far is that the existence of a parameter θ with a σ-finite unbounded dis-
tribution leads to a σ-finite unbounded P. The normalization of P in the Kolmogorov axioms is
hence replaced by the more general assumption of σ-finiteness. This is the minimal generalization
of the Kolmogorov axioms referred to in the Abstract.

4 BAYES THEOREM

The introduction of the concept of independence, and more generally the concept of conditional
distributions, can be regarded as the point where measure theory becomes probability theory
(Kolmogorov, 1956, p.8). The assumption that θ is σ-finite has very convenient consequences:
The conditional distribution given θ = θ exists, is unique, and is normalized. A sketch of the
proof is as follows.

Indeed, a desired property of the conditional distribution would be

P(A ∩ (θ ∈ B)) =
∫

B

P(A |θ = θ) Pθ(dθ) (2)

and this can be taken as the defining property of Pθ(A) = P(A |θ = θ). But then, since Pθ is σ-
finite, the Radon-Nikodym theorem (Halmos, 1950) states exactly that the function θ 7→ P(A|θ =
θ) is uniquely defined. This follows since equation (2) can be used to identify g(θ) = P(A |θ = θ)
as the density of the measure µ(B) = P(A ∩ (θ ∈ B)) with respect to Pθ. The required absolute
continuity is fulfilled since Pθ(B) = 0 implies P(A ∩ (θ ∈ B)) = 0. This is a consequence of
A ∩ (θ ∈ B) ⊂ (θ ∈ B). The normalization follows from the case A = Ω.

The conditional distribution of a random quantity x can be defined by Pθ
x(A) = Pθ(x ∈

A). In summary the notational conventions here are that subscripts indicate the distributions of
random quantities, and superscripts indicate conditions. Kolmogorov used a similar convention,
but reversed the role of superscripts and subscripts. The choice of the opposite convention here is
dictated by the very common usage of the notation PX , FX , fX , and similar for other important
quantities derived from a random quantity X.

A statistical experiment is modeled by a random quantity x, but conditionally given θ = θ.
The conditional distribution Pθ

x is usually referred to as the model, and the distribution Pθ is the
prior. In a concrete model the family Pθ

x is specified, and this is the starting point for conventional
statistics (Lehmann and Casella, 1998). Bayesian statistics (Berger, 1985) require the additional
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specification of the distribution Pθ. The result so far is a common theoretical frame for both
Bayesian and conventional statistics which includes improper distributions.

The model and the prior determine the distribution of the random quantity (x,θ) by Px,θ(dx, dθ)
= Pθ

x(dx) Pθ(dθ). This notation means in particular that if A ⊂ Ωx and B ⊂ Ωθ, then

Px,θ(A×B) =
∫

B

[
∫

A

Pθ
x(dx)] Pθ(dθ)

=
∫

B

Pθ
x(A) Pθ(dθ)

(3)

Again, the Radon-Nikodym theorem gives that the conditional distribution Pθ
x exists and is

uniquely determined by Px,θ and the previous factorization if Pθ is σ-finite. This follows since
equation (3) can be used to identify g(θ) = Pθ

x(A) as the density of the measure µ(B) = P(x ∈
A,θ ∈ B) with respect to Pθ. This notation transforms equation (3) into µ(dθ) = g(θ) Pθ(dθ), and
the existence and uniqueness of g is the Radon-Nikodym theorem for σ-finite measures (Halmos,
1950). The required absolute continuity is fulfilled since Pθ(B) = 0 implies Px,θ(A×B) = 0. This
is a consequence of (x ∈ A,θ ∈ B) ⊂ (θ ∈ B).

The relation µ(dθ) = g(θ) Pθ(dθ) can also be written g(θ) = µ(dθ)/ Pθ(dθ). This later formu-
lation indicates a constructive approach for the calculation of a conditional probability as a limit
of elementary conditional probabilities. This is actually possible with some care (Rudin, 1987,
p.143)(Doob, 1990, p.343).

The conditional Pθ
x is defined above by two different approaches. The first approach relies

on Pθ on Ω, and defines Pθ
x = (Pθ)x. The second approach defines Pθ

x directly on Ωx. The
uniqueness part of the Radon-Nikodym ensures consistency between these two definitions. There
exist simple examples which demonstrates that Pθ

x may exist even if Pθ does not exist.
Equation (3) with A = Ωx gives that the conditional distribution must be normalized:

Pθ
x(Ωx) = 1 (4)

It should also be noted that the distribution of the random quantity (x,θ) gives the distribution
of both x and θ. The proof for x follows from the diagrams

Ω
(x,θ)//

x
!!B

BB
BB

BB
B Ωx,θ

(x,θ) 7→x

��
Ωx

P � (x,θ)//
�

x
!!B

BB
BB

BB
B Px,θ_

(x,θ) 7→x

��
Px

This observation also explains why it is not necessary in applications to specify P, but rather
a sufficiently rich family of joint distributions. The distribution Px is the marginal distribution in
a Bayesian theory.

The factorization which defines the conditionals can be applied twice if both θ and x are
σ-finite. This gives

Pθ
x(dx) Pθ(dθ) = Px,θ(dx, dθ) = Px

θ(dθ) Px(dx) (5)

The conclusion is that a prior Pθ and a model Pθ
x which give a σ-finite marginal Px determine

the posterior Px
θ. This is the Bayes theorem corresponding to the title of this paper.

The most common case in applications is given by Pθ
x(dx) = f(x | θ)µ(dx) and Pθ(dθ) =

f(θ)ν(dθ), where µ and ν are counting measure or n-dimensional Lebesgue measure. The marginal
distribution is given by

Px(A) = P(x ∈ A,θ ∈ Ωθ)

=
∫ ∫

[x ∈ A]f(x | θ)f(θ)ν(dθ)µ(dx)

=
∫

A

f(x)µ(dx)

(6)
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and the marginal density is hence

f(x) =
∫

f(x | θ)f(θ)ν(dθ) (7)

It should be noted that ∞ is a possible value for f(x).
The case f(x) = 1/ |x| provides an example where x is σ-finite, but f(x) takes the value ∞ and

is furthermore not integrable on (−ε2, ε2). The marginal is σ-finite by definition iff there exists a
countable partition {Ai} of Ωx with P(x ∈ Ai) < ∞. A more convenient necessary and sufficient
condition for σ-finiteness is that µ(f = ∞) = 0. This holds in general for distributions on the
form f(x)µ(dx), where µ is σ-finite.

If x is σ-finite, then the posterior distribution is given by Px
θ(dθ) = f(θ |x)ν(dθ), where

f(θ |x) =
f(x | θ)f(θ)

f(x)
(8)

The proof follows by inspection of

Pθ
x(dx) Pθ(dθ) = f(x | θ)f(θ)µ(dx)ν(dθ)

= f(x)f(θ |x)µ(dx)ν(dθ)
= Px

θ(dθ) Px(dx)

(9)

The conclusion is that the elementary version of Bayes theorem remains valid. The key re-
quirement is that the marginal distribution of the data x is σ-finite.

5 THE MARGINALIZATION PARADOXES

Example 2 continued: The marginal x is σ-finite iff n > 1. It follows that the posterior distribution
of (µ,σ) given x is a well defined proper distribution, and this gives a well defined proper posterior
distribution for the coefficient of variation v = σ/µ. This can be calculated explicitly as explained
by Stone and Dawid (1972).

The alternative calculation suggested by Stone and Dawid (1972) is given by consideration of
the conditional distribution given v. This is however an invalid approach since v is not σ-finite.
The distribution is rather trivial

P(a < v < b) = P(a < σ/µ < b) = ∞ (10)

for a < b, and more generally Pv(dv) = ∞dv. Incidentally, this provides an example of a measure
which is not σ-finite, but absolutely continuous with respect to Lebesgue measure. The rules
0 · ∞ = 0 and a · ∞ = ∞ for a > 0 are used here, and elsewhere.

An alternative point of view is that the prior information for the two approaches differs.
The first approach assumes Pµ,σ(dµ, dσ) = [σ > 0]σ−1 dµdσ, and the second approach assumes
Pv(v) = π(v)dv with a σ-finite v. The first assumption leads to a distribution for v which is not
σ-finite, and it is hence not compatible with the second approach. The conclusion then is that
the two approaches are based on different prior information, and it is not paradoxical that the
conclusions differ. This explanation is similar in spirit to the one presented by Jaynes (2003), but
the mathematical approach differs.

2

Example 1 continued: The prior distribution Pr,µ(dr, dµ) = π(r)drdµ is σ-finite. Integration
of the joint distribution over r and µ proves that the marginal (x,y) is σ-finite. It follows that
the posterior distribution of (r,µ) given (x,y) is well defined, and furthermore explicitly given as
stated earlier.

The alternative calculation suggested by Stone and Dawid (1972) is given by consideration
of the conditional distribution given r. This is an invalid approach since r is not σ-finite. The
distribution is again rather trivial, and in this case given by Pr(r) = ∞π(r)dr.
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An alternative point of view is that the prior information for the two approaches differ. The first
approach assumes Pr,µ(dr, dµ) = π(r)drdµ and the second approach assumes Pr(dr) = π(r)dr.
These assumptions are not compatible since the first assumption leads to a distribution for r
which is not σ-finite, while the second approach assumes that r has a proper distribution. The
first approach has an unbounded P and the second approach has a normalized P. There is no
reason to expect that the two different priors should give the same posterior.

2

Example 3 continued:
The seemingly conflicting conclusions are explained as in the previous examples. A particular

observation is that the prior σ−2
1 (1− ρ2)−1dµ1dµ2dσ1dσ2dρ gives the prior density ∞· (1− ρ2)−1

for ρ, and the distribution of the correlation is not σ-finite. It can in particular not be concluded
that (1− ρ2)−1 is the density of ρ.

2

A general comment is that if a conditional distribution given x happens to depend on only
z = φ(x), then the conditional distribution coincide with the conditional distribution given z. This
theorem can be proven as in the case of proper distributions, but it must be assumed that both
x and z have σ-finite distributions. The above distribution of ρ is not σ-finite, and this explains
why the conclusion of the theorem fails in the example.

The marginalization paradoxes have now been resolved with reference to an underlying theory.

6 DISCUSSION

A possible and natural interpretation of an improper P is as a relative degree-of-belief given by
P(A)/ P(B). Consideration of this leads naturally to the elementary definition of P(A |B), and to
the point-of-view that the conditional probability is the more fundamental concept.

Renyi (1970) starts with an axiomatic definition of a conditional probability space given by
objects P(A |B). The family of sets B ⊂ Ω is a bunch, where the prototype of a bunch is given
by the sets which fulfill 0 < P(B) < ∞ for a σ-finite P. The structure theorem (Renyi, 1970,
p.40) for a conditional probability space and the completeness theorem (Renyi, 1970, p.43) show
that a σ-finite P and the elementary definition of P(A |B) give all possible conditional probability
spaces.

Renyi (1970, p.73) classifies random variables as regular if they transfer the conditional proba-
bility space into a conditional probability space on the real line. It follows that a random variable
is regular in the sense defined by Renyi if and only if it is σ-finite as defined here.

In the present paper the need for improper priors is the main practical motivation for the
introduction of a σ-finite P. The arguments given by Renyi (1970) give a more fundamental
motivation. The resulting theory is similar, but includes now also statistical models of both
Bayesian and conventional type.

A direct interpretation of P(A)/ P(B) in terms of relative frequencies and a law of large numbers
fails since a sequence of i.i.d. variables fails to exist in the case of an improper distribution P. This
is related to the marginalization paradoxes presented and explained above. Further investigations
into this kind of interpretation lead naturally to the consideration of sequences of exchangeable
variables and the related law of large numbers. This is most interesting, but will not be discussed
further here.

Existence of a σ-finite random quantity implies that the sample space Ω is σ-finite. This is
equivalent with the existence of a normalizing random variable. This is a variable n > 0 with
En = 1 (Rudin, 1987, p.121). The measure µ defined by µ(dω) = n(ω) P(dω) is then a proper
probability on Ω. This gives a device for generalization of well known results such as the Radon-
Nikodym theorem to the case of unbounded probabilities. The measure µ is equivalent with P in
the sense that P(A) = 0 is equivalent with µ(A) = 0.

A normalizing variable can also be useful for the practical problem of Monte Carlo simulation
from an improper distribution. A random sequence x1, x2, . . . from the proper distribution µ(dx) =
n(x) Px(dx) gives a weighted random sequence (x1, w1), (x2, w2), . . . from Px, where the weight is
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given by wi = 1/n(xi). The claim Eφ(X) = lim[φ(x1)w(x1) + · · · + φ(xn)w(xn)]/n follows from
the law of large numbers for µ. It is interesting to notice that weighted random sequences and
improper priors are important also in conditional Monte Carlo simulations (Trotter and Tukey,
1956; Lindqvist and Taraldsen, 2005).

The conditional distribution Px is said to be a regular conditional distribution if it is a measure
for almost all x. It is well known that it is impossible to represent a general conditional distribu-
tion Px by a regular conditional distribution (Doob, 1990, p.624). A sufficient condition for the
existence of a regular conditional distribution is that Ω is a complete separable metric space (a
Polish space) equipped with the Borel field, or it’s completion.

Bahadur and Bickel (1968) prove that there always exist a version of the conditional expectation
such that Etφ(t,x) = Etφ(t, x). The proof generalizes verbatim to the case of a σ-finite P. The
special case Pt(t = t) = 1 is of particular intuitive importance: The conditional distribution is
concentrated on (t = t). If Ωx is a Polish space and t = τ(x), then it can be proven that there
exist a regular Pt

x so that Pt
x(τ = t) = 1. It is known that in general it is impossible to find a

regular Pt
x so that Pt

x(τ = t) = 1 holds identically for all t (Bahadur and Bickel, 1968, p.378).
Chang and Pollard (1997) provide a discussion of conditional distributions with particular

emphasis on the property Pt
x(τ = s) = 0 for t 6= s. They allow also σ-finite Pt

x. These correspond
to the more general concept of conditional distributions considered by Hartigan (1983).

The notation in equation (5) indicates that it should be possible to integrate with respect to
Px

θ. Kolmogorov (1956, p.54) shows that it is possible to extend the conventional definition of
the integral to allow integration with respect to conditional distributions in general. This limiting
procedure gives a version of the conditional expectation defined as a more general integral and
justifies the notation in equation (5) in full generality. It is hence noteworthy that conditional
distributions give a more general concept than an indexed family of probability measures.

7 CONCLUSION

It has been demonstrated that a generalized Kolmogorov probability theory which includes im-
proper priors can be developed with relatively little extra effort. The resulting formulation is
essentially equivalent with the theory formulated by Renyi, but the motivation is different. The
theory includes a general Bayes theorem.

This theory explains the marginalization paradoxes, and may also prove to be of use in connec-
tion with other problems such as the development of a general theory for confidence distributions.
The results are relevant for Markov chain Monte Carlo methods, and gives in particular a general
sufficient condition for propriety of the resulting posteriors.

Improper priors may lead to inadmissible inference procedures (Stone and Dawid, 1972) and
paradoxical inference (Taraldsen, 2006). The presented theory does not remove the relevance of
these examples and the marginalization paradoxes.
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