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ON THE STATISTICAL MODELLING AND ANALYSIS OF

REPAIRABLE SYSTEMS

By Bo Henry Lindqvist

We review basic modelling approaches for failure and maintenance data

from repairable systems. In particular we consider imperfect repair models,

defined in terms of virtual age processes, and the trend-renewal process

which extends the nonhomogeneous Poisson process and the renewal pro-

cess. In the case where several systems of the same kind are observed,

we show how observed covariates and unobserved heterogeneity can be in-

cluded in the models. We also consider various approaches to trend testing.

Modern reliability databases usually contain information on the type of

failure, the type of maintenance, etc., in addition to the failure times them-

selves. Basing ourselves on recent literature we present a framework where

the observed events are modelled as marked point processes, with marks

labelling the types of events. Throughout the paper the emphasis is more

on modelling than on statistical inference.

1. Introduction. According to a commonly used definition of a repairable

system (Ascher and Feingold [5]), this is a system which, after failing to perform

one or more of its functions satisfactorily, can be restored to fully satisfactory

performance by any method other than replacement of the entire system. For the

present paper and following recent literature on the subject, we suggest to extend

this definition to include the possibility of additional maintenance actions which aim

at servicing the system for better performance. We shall refer to this as preventive

maintenance (PM), where one may further distinguish between condition based PM

and planned PM. The former type of maintenance is due when the system exhibits
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2 BO H. LINDQVIST

inferior performance while the latter is performed at predetermined points in time.

In this presentation we will consider some aspects of condition based PM, while the

planned PM will be briefly touched in the concluding remarks.

Traditionally, the literature on repairable systems is concerned with modelling

of the failure times, with point process theory being the main tool. The most com-

monly used models for the failure process of a repairable system are renewal pro-

cesses (RP), including the homogeneous Poisson processes (HPP), and nonhomoge-

neous Poisson processes (NHPP). While such models often are sufficient for simple

reliability studies, the need for more complex models has of course emerged.

There is currently a rapidly increasing literature concerning modelling and anal-

ysis of recurrent events, with a wide range of applications, including reliability

analysis of repairable systems which is the present topic. In a recent review paper,

Cook and Lawless [14] present several examples from medical studies where models

and methods for recurrent events are appropriate. The review paper Peña [55] gives

examples from both medical and reliability studies. The scope of our paper is bi-

ased towards reliability applications although most of the models considered have a

wider applicability. We will in particular consider models which incorporate effects

of different kinds of repair and maintenance, and with the possibility of handling

several failure causes, for example.

In a review paper like this it is of course impossible to cover all models or methods

which have been suggested in the literature. Our aim is rather to emphasize some

important ideas, and in this respect there will be a clear bias towards work in the

direction of our own interests and in work by ourselves and collaborates. Throughout

the paper the emphasis will be more on modelling than on statistical inference. In

addition we will try to give some historical perspectives on the theory and practice

related to repairable systems, again not necessarily complete and possibly biased

by our own views.

One of the first comprehensive treatments of statistical methods for recurrent

events with reliability emphasis, is the talk by David R. Cox, read before the Royal
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ANALYSIS OF REPAIRABLE SYSTEMS 3

Statistical Society in London in March 1955 and published in Cox [17]. Cox touched

a large number of topics, most of them motivated from the clothing industry. Top-

ics of particular importance for reliability applications were trend testing, testing

whether a failure process is a Poisson process, autocorrelated time gaps, doubly

stochastic Poisson processes, heterogeneity between systems, correlations between

different types of events, mean repair times, availability of service, etc. Many results

from the paper are contained in the subsequent book by Cox and Lewis [19], which

still is a very useful and much cited source on the subject.

Another early contribution to the study of repairable systems is the heavily cited

1963 paper by Frank Proschan [57], “Theoretical explanation of observed decreasing

failure rate”. This paper is particularly important since it led to the awareness that

proper analysis of recurrent events is an important part of reliability theory. In

particular it is one of the first treatments of heterogeneity in the theory of repairable

systems.

What seems to be the first book devoted solely to repairable systems reliability

was published by Ascher and Feingold [5] in 1984. For a long time this was the

main reference for repairable systems and it is still a major source. The subtitle of

the book is “Modeling, inference, misconceptions and their causes”. The authors

were complaining that reliability researchers and practitioners did not recognize the

crucial difference between the statistical treatment of repairable systems and non-

repairable components. They demonstrated by simple examples how conclusions

from data may be very wrong if times between failures are treated as i.i.d. if there

is a trend in them.

Data from repairable systems are usually given as ordered failure times T1, T2, . . .

with data coming from a single system or from several systems of the same kind.

The implicit assumption is usually that the system is repaired and put into new

operation immediately after the failure. This restriction, disregarding repair times,

is not serious if one is interested in modelling and estimation of the probability

mechanisms behind failure occurrences. It is, moreover, justified if time scale is
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taken to be operation time, number of cycles, number of kilometers run, etc. We

will impose this restriction in this paper, and we will therefore not cover important

topics such as availability and unavailability of systems, where the standard tool is

to use alternating renewal processes with operation periods alternating with repair

periods (see e.g. Rausand and Høyland [59, Ch. 7]).

A common recipe for analysis of data from a repairable system is as follows. First,

apply a test for trend in the inter-failure times Xi = Ti−Ti−1. If no significant trend

is found, then use an RP as a model, in which case the well established statistical

tools for analysis of i.i.d. observations can be used. Otherwise, use an NHPP model,

which handles trend through specification of an intensity function λ(t). For example,

a deteriorating system will then correspond to an increasing function λ(t), while

an improving system will correspond to a decreasing λ(t). A homogeneous Poisson

process, HPP(λ), corresponds to a constant intensity λ(t) ≡ λ and is at the same

time a renewal process with exponentially distributed inter-failure times.

An RP model is also called a perfect repair model, since the system is as good

as new after a failure. On the other hand, an NHPP model corresponds to what

is called minimal repairs, meaning that the system after repair is only as good

as it was immediately before the failure. Lindqvist, Elvebakk and Heggland [48]

represent the problem of distinguishing between the two “extreme” kinds of repair

as corresponding to the first “dimension” of a repairable system description in the

form of a so called model cube (Figure 3). The second “dimension” is the appearance

of trend or no trend in inter-failure times. This particular aspect of system behavior

has traditionally received much attention in reliability theory and is resolved by

considering trend tests. Finally, the third “dimension” corresponds to the existence

of unobserved heterogeneity between systems. This problem is of course relevant

only when several systems of the same kind are observed. There is currently a

large and increasing interest in the modelling of heterogeneity, usually known as

“frailties” in the survival analysis literature. To some extent, heterogeneity may

have been much overlooked in reliability studies, but there are important exceptions
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in the literature.

Several classes of models have in turn been suggested for cases not covered by

the “extreme” models RP and NHPP. These include the so called imperfect repair

models. The idea is that after a repair the “virtual” age of the unit is not necessarily

reduced to 0, such as for a perfect repair, nor is it the same as before the repair,

such as for a minimal repair. Instead, the virtual age is reduced by a certain amount

depending on the type of repair. We review the basic properties of such models,

and we will see how the concept of virtual age can be generalized to more than one

dimension.

Another class of alternatives to NHPP and RP models, which includes these

models, is the so called Trend-Renewal Process (TRP). This model is a generaliza-

tion of Berman’s modulated gamma process [9] and has been extensively studied in

Lindqvist et al. [48]. In the present paper we will use TRP models and their exten-

sions as our basic framework in order to illustrate some main issues on modelling

and statistical analysis of data from repairable systems. The TRP is particularly

suitable to illustrate the already mentioned three “dimensions” of repairable sys-

tems.

Modern reliability databases usually contain more information than just the

failure times. For example, there may be information on the times of preventive

maintenance (PM), identity of failed component, type of failure, type of repair, cost

of replacement, etc. Thus we shall more generally assume that observations from

repairable systems are represented as marked point processes where the marks label

the types of events. For example, the marks may be of two kinds, corresponding

to the type of maintenance, repair or PM. We review some recent literature in this

direction with the aim of extending theory of repairable systems to a competing

risks setting.

In addition to information on types of events, the databases may contain co-

variates representing environmental conditions, measures of various forms of load

and usage stress, etc. Such covariates could be constant, or are possibly varying
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6 BO H. LINDQVIST

with time. Regression models for repairable systems are useful for obtaining better

understanding of the underlying failure and PM mechanisms, or for predicting the

behavior of new items.

The outline of the paper is as follows. The basic notation and definitions used

in this paper are given in Section 2, including the introduction of the marked point

process setup. Section 3 reviews models for the case of failure data with a single

type of events, with emphasis on virtual age models and trend-renewal processes.

Section 4 is devoted to a discussion of unobserved heterogeneity in repairable sys-

tems data. The model cube for heterogeneous trend-renewal processes is considered

in particular. In Section 5 we consider various approaches to trend testing, both

for data coming from single systems and from several similar systems. The pos-

sible extension of virtual age models to the marked process case is considered in

Section 6. This section is based on some recent papers on the subject. Some con-

cluding remarks are given in Section 7, in particular concerning topics not covered

in the main text.

2. Notation and Basic Definitions. We consider a repairable system where

time usually runs from t = 0 and where events occur at ordered times T1, T2, . . ..

Here time is not necessarily calendar time, but can in principle be any suitable

measurement which is non-decreasing with calendar time, such as operation time,

number of cycles, number of kilometers run, length of a crack etc. As already

mentioned in the introduction, we shall disregard time durations of repair and

maintenance, so we assume that the system is always restarted immediately after

failure or a maintenance action. Types of events (type of maintenance, type of

failure, etc.) are, when applicable, recorded as J1, J2, . . . with Ji ∈ J for some mark

space J which will depend on the current application. For simplicity we will here

always assume that J is a finite set. The observable process (T1, J1), (T2, J2), . . .

will be called the marked event process or occasionally the failure process. The

inter-event, or inter-failure, times will be denoted X1, X2, . . .. Here Xi = Ti −
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Fig 1. Event times (Ti), event types (Ji) and sojourn times (Xi) of a maintained system.

Ti−1, i = 1, 2, . . ., where for convenience we define T0 ≡ 0. Figure 1 illustrates

the notation. We also make use of the counting process representation Nj(t) =

number of events of type j in (0, t], which counts the number of events of type j ∈

J , and N(t) =
∑

j∈J Nj(t), which counts the number of events irrespective of their

types.

In order to describe probability models for repairable systems we use some no-

tation from the theory of point processes. A key references is Andersen, Borgan,

Gill and Keiding [4]. Let Ft− dentote the history of the marked event process up

to, but not including, time t. In models without covariates we assume that Ft−

includes all information on event times and event types before time t. Formally,

Ft− is generated by the set {Nj(s) : 0 ≤ s < t, j ∈ J }.

Suppose then that a possibly time-dependent covariate vector Z(t) is observed

for the system. In this case the covariate history {Z(s) : 0 ≤ s ≤ t} should be added

to the history Ft− for each t > 0. This will imply that just before any time t we have

the complete information on the previous events, as well as the complete covariate

history including the value of the covariate at time t. In the case of a time-constant

covariate vector Z, the information in Z is added to each history Ft−.

The conditional intensity of the process with respect to events of type j ∈ J is

now defined as

(1) γj(t) = lim
∆t↓0

Pr(event of type j in [t, t+∆t)|Ft−)

∆t
,

which we call the type-specific intensity for j. Thus, γj(t)∆t is approximately the
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probability of an event of type j in the time interval [t, t + ∆t) given the history

before time t. Further, we let γ(t) =
∑

j∈J γj(t) so that γ(t)∆t is approximately

the conditional probability of an event of any type in the time interval [t, t+∆t). It

has in this been tacitly assumed that the probability of more than one event in an

interval [t, t+∆t) is o(∆t). Note that the γj(·) and hence the γ(·) may be functions

of the covariate vector Z(·) when appropriate. In typical applications, γj(t) may

depend on the covariate history only through the value Z(t) at time t. Further, it

is common to assume that γj(t) = γ0j (t)g(Z(t)), with γ
0
j (t) depending only on the

pure event history {Nj(s) : 0 ≤ s < t, j ∈ J }, and with g(·) being some parametric

function of the covariate vector such as the exponential one, g(z) = exp(β′z), where

β is a parameter vector.

For statistical inference we need an expression for the likelihood function. Sup-

pose that a single system with a marked event process as described above is observed

from time 0 to time τ , resulting in observations (T1, J1), (T2, J2), . . . , (TN(τ), JN(τ)),

in addition to the covariate vector Z(s) for 0 ≤ s ≤ τ if applicable. The likelihood

function is then given by ([4, Section II.7]),

(2) L =







N(τ)
∏

i=1

γJi(Ti)







exp

{

−

∫ τ

0

γ(u)du

}

.

A rough verification of (2) can be given as follows. First, partition the interval

(0, τ ] into s equal pieces, each of length h = τ/s. Assume that s is so large that

at most one event can happen in an interval of length h. Then the conditional

probability of an event of type j in the interval [(k − 1)h, kh), k = 1, . . . , s, given

the history before (k− 1)h, is roughly γj(kh)h, while the conditional probability of

no event in this interval is roughly 1 − γ(kh)h. The probability of a realization of

the process from 0 to τ will therefore include a product of N(τ) terms of the type

γj(kh)h, corresponding to the observed events, and which in the limit as h → 0

(after dividing by the normalization hN(τ)) gives the product term on the right

hand side of (2). The exponential part of (2) comes from taking the limit of the

product of the terms 1−γ(kh)h ≈ exp{−
∫ kh

(k−1)h
γ(t)dt} for the intervals containing
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ANALYSIS OF REPAIRABLE SYSTEMS 9

no event, assuming continuity of γ(·).

The likelihood function (2) is valid under the assumption that τ is a stopping

time, which means that its value depends stochastically only on the past history.

This property holds for the standard censoring schemes used in practice and in par-

ticular when τ is independent of the event process. There is, however, an increasing

awareness of the need to allow for dependent censoring in many applications (see

for example Huang and Wang [33]).

In typical applications, data will be available for several similar systems, with

stopping times τ usually varying from system to system. Under the assumption of

stochastic independence and identical probability mechanisms for the systems, the

total likelihood will be the product of expressions (2) computed for all systems. For

both parametric and nonparametric models of this kind there is a well developed

theory for estimation based on the martingale approach to point processes ([4] gives

a comprehensive account). Relevant references for statistical inference in reliability

models are, among others, Ascher and Feingold [5], Rausand and Høyland [59],

Crowder, Kimber, Smith and Sweeting [21] and Meeker and Escobar [52].

3. Models for Repairable Systems with a Single Type of Events. In

the present section we assume that the observations are just the failure times

T1, T2, . . .. Thus the mark space J will be ignored.

A large number of models can be obtained in terms of a given hazard function

z(t), which we think of as being the hazard function of the time to first failure

of a new system. The corresponding density and cumulative distribution functions

are denoted, respectively, f(t) and F (t), so z(t) = f(t)/(1 − F (t)). The idea is to

use the function z(t) together with a specification of the repair strategy to define

the conditional intensity function γ(t) of the failure process. Models of this type

are considered in Sections 3.1 and 3.2 below. The corresponding models may be

extended to the case with observed covariates, although this will not be made

explicit. As described in Section 2, the conditional intensities of the form γ(t) as
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10 BO H. LINDQVIST

considered below, may be multiplied with a factor g(Z(t)) defining the dependence

of the covariate value at time t.

3.1. Perfect and Minimal Repair Models. Suppose first that after each failure,

the system is repaired to a condition as good as new. In this case the failure process

is modelled by a renewal process with inter-event time distribution F , denoted

RP(F ). Clearly

γ(t) = z(t− TN(t−))

where t− TN(t−) is the time since the last failure strictly before time t.

Suppose instead that after a failure, the system is repaired only to the state it

had immediately before the failure, called a minimal repair. This means that the

conditional intensity of the failure process immediately after the failure is the same

as it was immediately before the failure, and hence is exactly as it would be if no

failure had ever occurred. Thus we must have

γ(t) = z(t)

so that the process is an NHPP with intensity z(t), denoted NHPP(z(·)). In practice

a minimal repair usually corresponds to repairing or replacing only a minor part of

the system.

3.2. Imperfect Repair Models and the Virtual Age of a System. A classical

model, suggested by Brown and Proschan [13], assumes that at the time of each

failure a perfect repair occurs with probability p and a minimal repair occurs with

probability 1−p, independently of the previous failure history. This model is a sim-

ple example of what has been called imperfect repair models, and has later been

generalized in several directions.

Kijima [34] suggested two imperfect repair models, both involving what is called

the virtual age (or effective age) of the system. The idea is to distinguish between

the system’s age, which is the time elapsed since the system was new, usually at

time t = 0, and the virtual age of the system which describes its present condition
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ANALYSIS OF REPAIRABLE SYSTEMS 11

when compared to a new system. The virtual time is redefined at failures according

to the type of repair performed, and runs along with the true time between repairs.

More precisely, a system with virtual age v ≥ 0 is assumed to behave exactly like

a new system which has reached age v without having failed. The hazard rate of a

system with virtual age v is thus zv(t) = z(v+ t) for t > 0, where z(·) is the hazard

rate of the time to first failure of the system.

It should be clear at this stage that models based on virtual ages make sense only

if the underlying hazard functions z(·) are non-constant. In fact, if z(·) is constant,

then a reduction of virtual age would not influence the rate of failures.

A variety of imperfect repair models can be obtained by specifying properties of

the virtual age process in addition to the hazard function z(t) of a new system. For

this, suppose v(i) is the virtual age of the system immediately after the ith event, i =

1, 2 . . .. The virtual age at time t > 0 is then defined by A(t) = v(N(t−))+t−TN(t−),

which is the sum of the virtual age after the last event before t and the time elapsed

since the last event. The process A(t), called the virtual age process by Last and

Szekli [40], thus increases linearly between events and may jump only at events. It

follows that

(3) γ(t) = zv(N(t−))(t− TN(t−)) = z(A(t))

assuming that A(t) is included in Ft− for all t. This means in turn that v(i) is con-

tained in FTi for each t so that v(i) depends on the history up to and including Ti.

The likelihood then becomes

L =







N(τ)
∏

i=1

z(v(i− 1) +Xi)







exp







−

N(τ)
∑

i=1

∫ Xi

0

z(v(i− 1) + u)du

−

∫ τ−TN(τ)

0

z(v(N(τ)) + u)du

}

.

This can be recognized as being the same as






N(τ)
∏

i=1

fv(i−1)(Xi)







{

1− Fv(N(τ))(τ − TN(τ))
}
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12 BO H. LINDQVIST

where fv(t) = f(v + t)/(1 − F (v)) and Fv(t) = (F (v + t) − F (v))/(1 − F (v)) are,

respectively, the density and cumulative distribution function of time to next failure

for a system with virtual age v and hence with hazard rate zv(·).

It is clear that the perfect repair and minimal repair models are the special cases

where, respectively, v(i) = 0 and v(i) = Ti, i = 1, 2, . . .. In Kijima’s [34] Model I,

the virtual age v(i) equals
∑i

k=1DkXk, where D1, D2, . . . is a sequence of random

variables on the interval [0, 1] such that Dk is independent of FTk− for each k.

Note that FTk− includes the D1, D2, . . . , Dk−1 so that in particular the Dk are

independent. In Kijima’s Model II the virtual age v(i) is set to
∑i

k=1(
∏i

j=kDj)Xk

with the same conditions for the Dk. This means that the virtual age after the

ith failure equals Di multiplied by the virtual age of the system just prior to the

ith failure. The model by Brown and Proschan [13] is obtained when Di is 1 with

probability 1− p and 0 with probability p for all i.

Dorado, Hollander and Sethuraman [22] studied nonparametric statistical in-

ference in a model slightly more general than Kijima’s models described above.

Nonparametric statistical inference in the Brown-Proschan model was first studied

by Whitaker and Samaniego [63] and later by Hollander, Presnell and Sethuraman

[31].

Recall that for the above models, the Di need to be observed for likelihood

inference using (2) to be valid. This means in effect that the type of repair (minimal

or perfect) must be reported for each repair action. In real applications, however,

exact information on the type of repair is rarely available. The estimation problem in

the case of unobserved Di has been considered by, for example, Lim [45] (suggesting

an EM-algorithm approach) and Langseth and Lindqvist [38, 39].

Doyen and Gaudoin [23] study classes of virtual age models based on determinis-

tic reduction of virtual age due to repairs, and hence not requiring the observation

of repair characteristics. The basic models of this type can be obtained simply by

letting the Di in Kijima’s models above be replaced by parametric functions. A

simple example of [23] is to use 1 − ρ for Di where 0 < ρ < 1 is a so-called age
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reduction factor.

There is a large literature on reliability modeling using the virtual age process.

For a review we refer to Pham and Wang [58] and Lindqvist [46]. Section 6 presents

an attempt to define a multivariate virtual age process and corresponding repairable

system models with several types of events.

3.3. Generalized Linear Model Types. Berman and Turner [10] considered esti-

mation in parametric models with the conditional intensity being of the generalized

linear model type

(4) γ(t) = g

{

p
∑

i=0

βizi(t)

}

,

where g is a known monotonic continuous function, the zi(t) are known functions of

t and the history Ft−, and the βi are unknown parameters. Note that the functions

zi(t) may be functions of the covariates if available. One aim of the paper was to

demonstrate how to use software for generalized linear models to analyze repairable

systems data. The model (4) is closely related to the modulated renewal process

introduced in Cox [18] for which Cox suggested a semiparametric approach for

inference using a partial likelihood.

The special case of (4) obtained when g(y) = ey was applied to repairable systems

by Lawless and Thiagarajah [43]. In particular they considered the model

(5) γ(t) = eβ0+β1g1(t)+β2g2(t−TN(t−))

where g1 and g2 are known functions. This conditional intensity is a function of

both the calendar time and the time since last failure. Note that β1 = 0 gives an

RP, β2 = 0 gives an NHPP, while β1 = β2 = 0 gives an HPP.

3.4. The Trend-Renewal Process. A class of processes called inhomogeneous

gamma processes was suggested by Berman [9]. Berman motivated the inhomoge-

neous gamma process by first considering the process T1, T2, . . . obtained by ob-
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serving every κth event of an NHPP, where κ is a positive integer. He then showed

how to generalize to the case when κ is any positive number.

We present now a generalization of Berman’s idea, called the trend-renewal pro-

cess, which was extensively studied in Lindqvist et al. [48]. We will use this process

in particular to describe the “three dimensions” related to the properties of re-

pairable systems.

The idea behind the trend-renewal process is to generalize the following well

known property of the NHPP. First let the cumulative intensity function corre-

sponding to an intensity λ(·) be defined by Λ(t) =
∫ t

0
λ(u)du. Then if T1, T2, . . . is an

NHPP(λ(·)), the time-transformed stochastic process Λ(T1),Λ(T2), . . . is HPP(1).

The trend-renewal process (TRP) is defined simply by allowing the above HPP(1)

to be any renewal process RP(F ). Thus, in addition to the intensity function λ(t),

for a TRP we need to specify a distribution function F of the inter-arrival times of

this renewal process. Formally we can define the process TRP(F, λ(·)) as follows:

Let λ(t) be a nonnegative function defined for t ≥ 0, and let Λ(t) =
∫ t

0
λ(u)du.

The process T1, T2, . . . is called TRP(F, λ(·)) if the transformed process Λ(T1),Λ(T2), . . .

is RP(F ), that is if the Λ(Ti) − Λ(Ti−1); i = 1, 2, . . . are i.i.d. with distribution

function F . The function λ(·) is called the trend function, while F is called the re-

newal distribution. In order to have uniqueness of the model it is usually assumed

that F has expected value 1.

Figure 2 illustrates the definition. For an NHPP(λ(·)), the RP(F ) would be

HPP(1). Thus TRP(1−e−x, λ(·)) = NHPP(λ(·)). Also, TRP(F, 1) = RP(F ), which

shows that the TRP class includes both the RP and NHPP classes.

As a motivation for the TRP model, suppose that failures of a particular system

correspond to replacement of a major part, for example the engine of a tractor

(as in the data given by Barlow and Davis [6]), while the rest of the system is

not maintained. Then if the rest of the system is not subjected to wear, a renewal

process would be a plausible model for the observed failure process. In the presence

of wear, on the other hand, an increased replacement frequency is to be expected.
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Fig 2. The defining property of the trend-renewal process.

This is achieved in a TRP model by accelerating the internal time of the renewal

process according to a time transformation Λ(t) =
∫ t

0
λ(u)du which represents the

cumulative wear. The TRP model thus has some similarities to accelerated failure

time models.

It can be shown [48] that the conditional intensity function for the TRP(F, λ(·))

is

(6) γ(t) = z(Λ(t)− Λ(TN(t−)))λ(t)

where z(·) is the hazard rate corresponding to F . This is a product of one factor,

λ(t), which depends on the age t of the system and one factor which depends on

a transformed time from the last previous failure. However, time since last failure

is measured on a scale depending on the current intensity of failures. This shows

that the TRP class does not contain, nor is contained in, the classes of processes

considered in the previous subsection.

Suppose now that a single system has been observed in [0, τ ], with failures at

T1, T2, . . . , TN(τ). If a TRP(F, λ(·)) is used as a model, then substitution of (6) into

(2) gives the likelihood

(7) L = {

N(τ)
∏

i=1

z[Λ(Ti)− Λ(Ti−1)]λ(Ti)} exp{−

∫ τ

0

z[Λ(u)− Λ(TN(u−))]λ(u)du}.

Equivalently, if f is the density function corresponding to F , we can write this
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likelihood as

(8) L = {

N(τ)
∏

i=1

f [Λ(Ti)− Λ(Ti−1)]λ(Ti)}{1− F [Λ(τ)− Λ(TN(τ))]}.

The latter form of the likelihood follows directly from the definition of the TRP,

since the conditional density of Ti given T1 = t1, . . . , Ti−1 = ti−1 is f [Λ(ti) −

Λ(ti−1)]λ(ti), and the probability of no failures in the time interval (TN(τ), τ ], given

T1, . . . , TN(τ), is 1− F [Λ(τ)− Λ(TN(τ))].

A possible extension of the TRP to include covariates would be to multiply

the trend function λ(t) by a factor g(Z(t)), for example of the form exp(β′Z(t))

as suggested in Section 2. The λ(t) would then play the role of a baseline trend

function. This definition generalizes in a natural way the commonly used NHPP

model with covariates, see for example Lawless [41].

4. Unobserved Heterogeneity in Repairable Systems. Analyses of reli-

ability data often lead to an apparent decreasing failure rate which could be coun-

terintuitive in view of wear and ageing effects. Proschan [57] pointed out that such

observed decreasing rates could be caused by unobserved heterogeneity. Proschan

presented failure data from 17 air conditioner systems on Boeing 720 airplanes. Ap-

plying Mann’s [51] nonparametric trend test to each system and then combining to

a global test statistic he argued that there is no significant trend in the failure times

for each separate plane. He then concluded by a similar test that “it seems safe to

accept the exponential distribution as describing the failure interval, although to

each plane may correspond a different failure rate”. He demonstrated this last fact

statistically by using a result from Barlow, Marshall and Proschan [7] which im-

plies that a mixture of exponential distributions has a decreasing failure rate. More

precisely, he applied again the Mann test, which is sensitive to a decreasing failure

rate, on the pooled inter-failure times from all the planes. In this way he obtained

a P-value of 0.007 for the null hypothesis of identical exponential distributions of

the inter-failure times.
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Heterogeneity in connection with Poisson-processes was in fact studied as early

as 1920 by Greenwood and Yule [27], who used a compound Poisson distribution.

Later, Maguire et al. [50], studying occurrences of industrial accidents, showed how

Laplace transforms enter general expressions for resulting distributions of intervals

and counts. Cox [17] considered the possibility of heterogeneity, which he called

variance components, between homogeneous Poisson-processes and listed several

reasons for the interest in such models for repairable systems data.

It has similarly long been known in biostatistics that neglecting individual het-

erogeneity may lead to severe bias in estimates of lifetime distributions. The idea

is that individuals or components have different “frailties”, and that those who are

most “frail” will die or fail earlier than the others. This in turn leads to a decreasing

population hazard, which has often been misinterpreted. Important references on

heterogeneity in the biostatistics literature are Vaupel et al. [62], Hougaard [32] and

Aalen [2]. It should be noted that heterogeneity is in general unidentifiable if being

considered an individual quantity. For identifiability it is necessary that frailty is

common to several individuals, for example in family studies in biostatistics, or if

several events are observed for each individual, such as for the repairable systems

considered in this paper and more generally for recurrent events data. The presence

of heterogeneity is often apparent for data from repairable systems if there is a large

variation in the number of events per system. However, it is not really possible to

distinguish between heterogeneity and dependence of the intensity on past events

for a single process. It is a fact, though, that ignorance of an existing heterogeneity

may lead to sub-optimal or even wrong decisions.

4.1. Modelling of Heterogeneity for Repairable Systems. The common way of

modelling heterogeneity is to include an unobservable multiplicative constant in the

conditional intensity of the process, see for example Vaupel et al. [62]. For systems

with a single type of event this is done by first replacing the conditional intensities

γ(t) in (1) by aγ(t) where a is a random variable representing the “frailty” of the
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system and such that a is included in Ft− for each t. Note that γ(t) as described in

Section 2 may well be a function of covariates. Now a can be viewed as being the

effect of an unobserved covariate. Systems with a large value of a will have a larger

failure proneness than a system with a low value of a. Intuitively, the variation in the

a between systems implies that the variation in observed number of failures among

the systems is larger than would be expected if the failure processes were identically

distributed. Now, since a is unobservable, one needs to take the expectation of the

likelihood resulting from (2) with respect to the distribution of a in order to have

a likelihood function for the observed data.

In the marked point process formulation of Section 2 we may more generally

assume that there are different frailty variables for each event type j ∈ J . More

precisely, we assume that there is a random vector a = (aj , j ∈ J ) such that

the type-specific intensities for given a are ajγj(t), respectively, where γj(t) corre-

sponds to the type specific conditional intensity defined in Section 2. The resulting

likelihood including heterogeneity is thus

(9) L = Ea









N(τ)
∏

i=1

aJiγJi(Ti)



 exp







−
∑

j∈J

aj

∫ τ

0

γj(u)du











where the expected value is taken with respect to the joint distribution of a. Mul-

tivariate frailty distributions are considered by, for example, Hougaard [32] and

Aalen [1].

In the case of several independent systems, it is assumed that the a corresponding

to each system are i.i.d. from the given joint distribution. The total likelihood is

then the product of factors (9), one for each system. Note that for identifiability

it may be necessary to introduce a normalization of a, for example assuming that

E(||a||) = 1. This is because otherwise a scale factor may be moved from aj to

γj(·) or vice versa without changing the value of (9). Alternatively one may let the

aj act as free random scale parameters in the model if the γj(·) themselves do not

include scale parameters.

For the special case of single type of event one obtains the following simplification
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of the likelihood function in (9),

(10) L = Ea



aN(τ)





N(τ)
∏

i=1

γ(Ti)



 exp

{

−a

∫ τ

0

γ(u)du

}



 ,

where the expectation is with respect to the distribution of the random variable a

and where for normalization one will usually assume E(a) = 1. .

The expression (10) suggests that a gamma-distribution for a is mathematically

convenient, since a closed form expression of the likelihood is obtained. More gener-

ally, for the version (9), a multivariate gamma-distribution for a leads to a simplified

expression (see for example [1, 32] regarding multivariate gamma-distributions).

Consider now the likelihood (10), and suppose that a is gamma-distributed with

E(a) = 1, V ar(a) = δ. Then a straightforward computation gives

L =







N(τ)
∏

i=1

γ(Ti)







Γ (N(τ) + 1/δ)

δ1/δΓ(1/δ)
[

1/δ +
∫ τ

0
γ(u)du

]N(τ)+1/δ
(11)

=







N(τ)
∏

i=1

γ(Ti)







[δ(N(τ)− 1) + 1][δ(N(τ)− 2) + 1] · · · 1
[

δ
∫ τ

0
γ(u)du+ 1

]N(τ)+1/δ

where we have used the fact that Γ(r + 1) = rΓ(r). Recall that γ(Ti) may well

include covariates. This likelihood expression is applicable, for example, together

with the virtual age model (3) and the generalized linear model types (4) and

(5). It is also the likelihood function for NHPPs with heterogeneity and possibly

covariates, as studied in Lawless [41], and results in the likelihood of the so called

compound power law model studied by Engelhardt and Bain [26].

We remark that (11) converges to (2) (assuming a single type of event) as δ → 0.

4.2. Heterogeneity in the TRP Model, the HTRP Model. Lindqvist et al [48] in-

troduced heterogeneity into the TRP model by including an unobservable random

multiplicative constant a in the trend function λ(t), thus considering the conditional

model TRP(F, aλ(·)) with a renewal distribution F not depending on a. This def-

inition is consistent with the regression version of TRP as suggested at the end
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of Section 3.4. Now the a replaces the function g(Z(t)) used there. Note that in

practice one may want to include both the frailty a and a covariate factor g(Z(t)).

In order to simplify the discussion, we will, however, not consider covariates in our

presentation below.

Considering (6) it is seen that the conditional intensity function given a is no

longer of the simple multiplicative form aγ(t) which was assumed in the previous

subsection. This is because the Λ(·) in (6) is also multiplied by a. Instead of the

expression (10), the relevant likelihood from one system becomes, using (7),

(12)

L = Ea



{

N(τ)
∏

i=1

z[a(Λ(Ti)− Λ(Ti−1))]aλ(Ti)} exp{−a

∫ τ

0

z[a(Λ(u)− Λ(TN(u−)))]λ(u)du}





or, using (8),

(13) L = Ea{

N(τ)
∏

i=1

f [a(Λ(Ti)− Λ(Ti−1))]aλ(Ti)}{1− F [a(Λ(τ)− Λ(TN(τ)))]}.

Here f and z are respectively, as before, the density and hazard function of the

distribution F .

The expressions (12) and (13) appear to be less tractable than the expression

(10). Lindqvist et al. [48] obtain, however, a rather simple expression for the like-

lihood in the case of an inhomogeneous gamma process with gamma distributed

heterogeneity factor a, under the further assumption that the stopping times τ

coincide with failure times. In this case the last factor of (13) disappears, and let-

ting F be the gamma-distribution with unit expectation and variance γ, while a is

gamma-distributed with unit expectation and variance δ, one obtains

L = {

N(τ)
∏

i=1

(Λ(Ti)− Λ(Ti−1))
1/γ−1λ(Ti)}

×
Γ (N(τ)/γ + 1/δ)

γN(τ)/γ [Γ(1/γ)]N(τ)δ1/δΓ(1/δ)
[

1/δ + (1/γ)Λ(TN(τ))
]N(τ)/γ+1/δ

.

Note that for γ = 1 this is of the same form as in (11).

More generally, we use the notation HTRP(F, λ(·), H) for the model with likeli-

hood (12) or, equivalently, (13). The ’H’ in ’HTRP’ here stands for ’heterogeneity’,
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Fig 3. The model cube illustrating the HTRP(F, λ(·), H) and the submodels obtained by restrict-
ing one or more of F, λ(·), H to their basic versions, respectively F being standard exponential
(using notation ’−’ in the figure), λ(t) ≡ λ being constant in time, and H being the distribution
deterministic at 1 (’−’ in the figure).

and the H which is added to (F, λ(·)) in the notation, is the distribution of the

variable a, which can be any positive distribution with expected value 1.

4.3. The Three Dimensions of a Repairable System Description: The Model Cube

and the Log-Likelihood Cube. A useful feature of the HTRP model is that several

models for repairable systems can be represented as sub-models. With the notation

HPP, NHPP, RP and TRP used as before, and with an H in front meaning the model

which includes heterogeneity, Figure 3 shows how the HTRP and the seven sub-

models can be represented in a cube. Each vertex of the cube represents a model,

and the lines connecting them correspond to changing one of the three “coordinates”

(F, λ(·), H) in the HTRP-notation. Going to the right corresponds to introducing

a time trend, going upwards corresponds to entering a non-Poisson (renewal) case,

and going backwards (inwards) corresponds to introducing heterogeneity.
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Fig 4. The log-likelihood cube for the data of Proschan [57] concerning failures of airconditioner
systems on airplanes, fitted with a parametric HTRP(F, λ(·), H) model and its sub-models. Here
F is a Weibull-distribution with expected value 1 and shape parameter s, λ(t) = cbtb−1 is a power
function of t, and H is a gamma-distribution with expected value 1 and variance v. The maximum
value of the log likelihood is denoted l.
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Fig 5. The log-likelihood cube for the data of Aalen and Husebye [3] concerning migratory motor
complex periods, fitted with a parametric HTRP(F, λ(·), H) model and its sub-models. Here F

is a Weibull-distribution with expected value 1 and shape parameter s, λ(t) = cbtb−1 is a power
function of t, and H is a gamma-distribution with expected value 1 and variance v. The maximum
value of the log likelihood is denoted l.
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In analyzing data by parametric HTRP models we may use the cube to facilitate

the presentation of maximum log-likelihood values and parameter estimates for the

different models in a convenient, visual manner which may guide in model choice

(see Lindqvist et al. [48]). Figure 4 and Figure 5 show maximum likelihood values

computed from the data of Proschan [57] and Aalen and Husebye [3], respectively.

The latter data set is taken from a medical study and is included here in order to

demonstrate results for data which are clearly non-Poisson distributed.

For the Proschan data we conclude that the renewal distribution can be taken

to be exponential, leaving us with the bottom face of the cube. Further, when

comparing the front face to the back face there is clear reason to conclude that

there is heterogeneity between the systems, with Var(a) being estimated to approx-

imately 0.11. The conclusions so far are thus in accordance with the conclusions of

Proschan [57]. However, a comparison of the left and right faces of the cube reveals a

slight time trend. In fact, twice the log-likelihood difference from HHPP to HNHPP

amounts to 5.24, giving a p-value of 0.022 assuming a chi-square distribution with

one degree of freedom of the corresponding likelihood ratio test statistic. The power

parameter b of the trend function is, furthermore, estimated to 1.16.

The most obvious conclusion for the Aalen and Husebye [3] data is that the

renewal distribution is not exponential, implying that the upper face of the cube

applies. Further, the differences in log likelihood obtained by introducing hetero-

geneity are seen to be small enough to conclude no significant heterogeneity. How-

ever, as for the Proschan data, there seems to be a slight time trend. Here, twice

the log-likelihood difference from RP to TRP amounts to 4.18, giving a p-value

of 0.041, while the power parameter b is estimated to 1.14 for the TRP model.

Note the large difference in log likelihood value between, for example, the TRP

and NHPP models. As shown by the parameter estimates (Figure 4), the NHPP

estimates seem to compensate the large estimated shape parameter for the renewal

distribution of the TRP by increasing the power parameter b of the trend function

(from 1.14 to 1.45). It is also seen that for the Poisson models (bottom face) there
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Fig 6. Plot of cumulative number of failures, N(t), for airconditioner failures of plane 7913 in
the Proschan [57] data.

is no gain in log likelihood by introducing heterogeneity. Thus the maximum like-

lihood estimates of the heterogeneity variance v are given by the border value 0.

This is so since the profile likelihood of v can be shown to be a decreasing function

of v > 0 near 0 (see [48] for a further discussion of this effect).

5. Trend Testing. In many applications involving repairable systems, the

main aim is to detect trends in the pattern of failures occurring over time. These

may often be revealed as monotonic trends in the inter-failure times, corresponding

to either improving or deteriorating systems. Various types of non-monotonic trends

may also be present, for example a cyclic trend or a bathtub shaped trend.

5.1. Graphical methods. A simple but informative way of checking for a possible

trend in the pattern of failures is to study plots like Figure 6, which is a plot of

cumulative failure number versus failure time for a single system. The underlying

data are failures of the airconditioner system of airplane 7913 of the Proschan
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[57] data. A convex plot would be indicative of a deteriorating system, while a

concave plot would indicate an improving system. In Figure 6 there seems to be

no significant deviation from a straight line, however, thus indicating no trend in

inter-failure times.

5.1.1. Nelson-Aalen plot. The plot of Figure 6 is a special case of the Nelson-

Aalen plot to be described next. Assume that m systems are observed, with the

individual failure processes being independent and identically distributed. Suppose

further that the ith process is observed on the time interval (0, τi] and let y(t)

denote the number of processes under observation at time t. Note that y(t) is a

function of the τi and not of the failure times. Let Tk denote the kth arrival time

in the superposed process, that is Ti is a failure time in one of the processes and

0 < T1 ≤ T2 ≤ . . . ≤ TN ≤ τ where τ = max{τi : i = 1, . . . ,m}. Define the

cumulative mean function of a single process to be M(t) = E(N(t)). The Nelson-

Aalen estimator of M(t) is given by

M̂(t) =
∑

Tk≤t

1

y(Tk)

where the sum is taken over all failure times Tk before or at time t. Figure 7 shows

the plot of M̂(t) for the data on times of valve-seat replacements in a fleet ofm = 41

diesel engines, taken from Nelson [53]. The plot indicates that the replacement

frequency is fairly constant up to 550 days, and then increases as revealed from the

convex shape of the curve at the right end.

The plot as defined here is studied, for example, in Nelson [53] and Lawless and

Nadeau [42]. These papers also derive robust non-parametric estimates of the vari-

ance of M̂(t), valid under any distributional properties of the individual processes

N(t).

5.1.2. TTT plot. Consider the special case of the above where the m processes

are independent NHPPs with a common intensity function λ(t). The superposed

process is now an NHPP with intensity function φ(t) = λ(t)y(t), and hence (see
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Fig 7. Nelson-Aalen plot of the estimated cumulative mean function M̂(t) for the valve-seat
replacement data as given by Nelson [53].
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Fig 8. TTT plot of valve seat data as given in Nelson [53].
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Section 3.4) the process
∫ T1

0
φ(u)du,

∫ T2

0
, φ(u)du, . . . is HPP(1) on (0, τ). Define the

total time on test, TTT, at time t by

r(t) =

∫ t

0

y(u)du.

Barlow and Davis [6] introduced the TTT plot for repairable systems data as a plot

of the points
(

i

N
,
r(Ti)

r(τ)

)

, i = 1, . . . , N.

The idea is that if λ(t) is a constant, so that the processes are HPP, then the

r(Ti)/r(τ), i = 1, . . . , N , form an HPP(1) on [0, 1]. In this case the TTT plot is

by its definition expected to be located near the main diagonal of the unit square.

Under the alternatives of decreasing, increasing and bathtub shaped intensity λ(t),

on the other hand, the TTT plots appear to be, respectively, convex, concave and

S-shaped. Figure 8 shows the TTT plot of the valve-seat replacement data of Nelson

[53]. The plot appears to be fairly straight, but with a slightly concave shape near

the end corresponding to the increasing intensity here as revealed by the Nelson-

Aalen plot in Figure 7.

5.2. Statistical trend tests. Statistical trend tests for repairable systems data

were extensively discussed by Ascher and Feingold [5, Ch. 5B]. A trend test is a

statistical test for the null hypothesis that the failure process is stationary, in some

sense to be made precise, versus alternatives depending on the kind of trend one

would like to detect. Here we restrict attention to the null hypothesis that the

process is an HPP or more generally an RP. However, as will be discussed below,

some care should be taken when determining the relevant null hypothesis.

The null hypothesis of HPP is the most common and often the most useful

one in reliability applications. The corresponding null property, under the name

of “randomness”, was studied in several papers in the 1950s, and various tests for

randomness in time were devised. Here randomness pertained to the property that

counts in given time intervals are Poisson-distributed. Maguire et al. [50], however,
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discussed the advantages of using inter-event times rather than counts in order to

test for changes with time of the occurrence rate of events. Cox [17] stated eight

different kinds of possible alternatives to “randomness”, one of them being trend

in the sense that the conditional intensity is a smooth function of time.

5.2.1. Tests of the Null Hypothesis of HPP. Single process. Suppose first that

the null hypothesis is “the process is an HPP”, with alternative being an NHPP

with monotone intensity. Two classical trend tests for this case are the Laplace test

and the Military Handbook test (see e.g. Ascher and Feingold [5, p. 79]). To see how

they are obtained, consider a single system observed on [0, τ ]. If the failure process

is an HPP, then given N(τ) = n, the failure times T1, T2, . . . , Tn are distributed

as the ordering of n i.i.d. uniform random variables on [0, τ ]. Equivalently, the

Ti/τ (i = 1, . . . , n) are distributed as ordered i.i.d. uniforms on [0, 1] conditionally

given N(τ) = n. From this we can in principle obtain trend-tests from any test for

detecting deviations from a uniform sample. The Laplace test statistic is simply a

normalization of
∑n

i=1 Ti, while the Military Handbook test statistic is similarly

a normalization of
∑n

i=1 log Ti. The Laplace test and the Military Handbook test

are optimal tests against the alternatives of NHPPs with, respectively, log linear

intensity and power intensity functions (Ascher and Feingold [5, p. 79]).

Several processes. As in Section 5.1.2, assume that m independent NHPPs with a

common intensity function λ(t) are observed, where the ith process is observed on

the time interval (0, τi]. Recall that, under the null hypothesis that λ(t) is a con-

stant, the r(Ti)/r(τ), i = 1, . . . , N , form an HPP(1) on [0, 1]. Kvaløy and Lindqvist

[35] suggested from this that formal trend tests could be defined by substituting

the r(Ti)/r(τ) into the Laplace and Military Handbook test statistics. While these

TTT-based tests are powerful against monotone alternatives, the authors suggested

to use a test statistic based on the Anderson-Darling statistic as a general test with

power against several kinds of trend.
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For many applications, the null hypothesis need to be weakened to state that

each process is an HPP, but that intensities may differ from system to system. For

example, in the data of Proschan [57], one may be interested in a simultaneous trend

test for the systems, allowing there to be heterogeneities between them. Kvaløy and

Lindqvist [35] suggested tests for this case, called combined tests. A precise setting

for these tests has recently been defined by Kvist, Andersen and Kessing [37], who

consider a model where the conditional intensity function for a particular system is

given by ag(Z)λ(t) where a is an unobservable frailty variable as considered in Sec-

tion 4.1, Z is a fixed-time covariate vector observed for each system, g is a parametric

regression function, while λ(t) is a baseline intensity function. Suppose that such a

process is observed on the time interval [0, τ ] with events at times T1, T2, . . . , TN(τ).

Then, conditional on (a,Z, τ,N(τ)), the T1/τ, T2/τ, . . . , TN(τ)/τ are distributed as

N(τ) ordered standard uniform variables on [0, 1]. We are hence back to the setting

of Section 5.2.1. In practice one observes m independent processes of this kind, with

a common λ(t), with the a being i.i.d. unobservable random variables and the Z

being observed covariate vectors for each system. The above mentioned combined

tests by Kvaløy and Lindqvist [35] can thus be used to test the null hypothesis that

λ(t) does not depend on t. Kvist et al. [37] apply the Laplace type test of this kind

on data from the Danish register on psychiatric hospital admissions.

5.2.2. Tests of the Null Hypothesis of RP. The Laplace-test and the Military

Handbook test are tests for the null hypothesis that the data come from HPPs.

Thus rejection of the null hypothesis means merely that the process is not an

HPP. It could still, however, be an RP and thus still have “no trend”. Lawless and

Thiagaraja [43] and Elvebakk [25] concluded from simulations that the Laplace and

Military Handbook tests in fact may be seriously misleading when used to detect

trend departures from general renewal processes. Similarly, Lewis and Robinson

[44] noted that these tests are not able to discriminate properly between trends in

the data and the appearance of sequences of very long intervals.
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In order to test the null hypothesis of RP, Lewis and Robinson [44] suggested to

modify the Laplace test by dividing the test statistic by an estimate of the coefficient

of variation of the inter-failure times under the null hypothesis of an RP. This test,

called the Lewis-Robinson test, is thus a simple modification of the Laplace test.

Another classical trend test for the null hypothesis of RP is the rank test developed

by Mann [51] and used in Proschan [57] (see Section 4).

Kvaløy and Lindqvist [36] presented a general class of tests for renewal process

versus both monotonic and nonmonotonic trend for which the Lewis-Robinson and

a useful Anderson-Darling type test are special cases.

Elvebakk [25] demonstrated how tests for the null hypothesis of RP can be ob-

tained from tests for the Poisson case by adjusting their critical values by resampling

failure data under the RP hypothesis. The general conclusion of Elvebakk [25] was

to recommend the use of such resampled trend tests whenever it is not clear that

the failure processes are of Poisson type. In particular he showed in a simulation

study that the resampled tests are usually favorable to the Lewis-Robinson test,

and that they do not lose much power under NHPP alternatives when compared

to the standard tests.

5.2.3. Tests of the Null Hypothesis of Stationary Inter-failure Times. Lewis

and Robinson [44] presented a test for distinguishing between a general stationary

sequence of inter-failure times Xi, and a monotonic trend in inter-failure times.

Elvebakk [25] extended the resampling trend testing approach described in the

previous subsection, in order to cover the case when “no trend” corresponds to

stationary inter-failure times. The idea is to resample data under this new null

hypothesis assumption. Elvebakk did this both by a parametric approach assuming

an underlying autoregressive model, and by employing a block bootstrap technique

adapted from Hall [28]. Simulations indicated rather satisfactory performance of

the method.
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5.2.4. Trend Tests Obtained as Likelihood Ratio Tests. In parametric models

which include separate parameters for trend, trend tests may be performed as like-

lihood ratio tests involving these parameters. An example is to test the null hypoth-

esis β1 = 0 in (5) which was suggested in [43]. Trend tests can also be obtained in

models of the form HTRP(F, λ(·), H) by testing the null hypothesis that λ(·) ≡ λ

using likelihood ratio tests. Note that this leads to tests of the null hypothesis that

the processes are all renewal processes, with a possibility of heterogeneity.

A nonparametric likelihood ratio test for the null hypothesis of an HPP versus the

alternative of an NHPP with monotone intensity λ(·) was derived by Boswell [11]. A

generalization to the null hypothesis of RP can be obtained using the nonparametric

monotone estimator of λ(·) in the TRP model derived by Heggland and Lindqvist

[29].

6. Repairable Systems with Several Types of Events. In this section we

consider the general marked event process as described in Section 2. The purpose

is to show how new classes of maintenance and repair models can be obtained

by generalizing the approach of the imperfect repair models for single type events

considered in Section 3.2. In order to simplify the presentation we shall not allow

covariates or heterogeneity in the models considered here.

As in Section 3.2, we consider first a non-repairable unit. Assume that this unit

may fail due to one of several causes, or may be stopped for PM before it fails, in

which case failure is prevented.

We can formally think of this as having a system with, say, n components,

denoted {C1, C2, . . . , Cn}, where a unique failing component can be identified at

failures of the system, and where PM if applicable is represented by one of these

components in order to simplify notation. Let Wj be the potential failure time

due to failure of component Cj , j = 1, 2, . . . , n. What is observed is the failure

time T = min(W1, . . . ,Wn) and the identity of the failing component, say J = j

if the component Cj fails. This determines a competing risks situation with n
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competing risks and with the observed outcome (T, J) (Crowder [20, Ch. 3]). The

joint distribution of (T, J) is thus identifiable from data, as are the so called type-

specific hazards defined by

(14) hj(t) = lim
∆t↓0

Pr(t < T ≤ t+∆t, J = j | T > t)

∆t
.

However, neither the joint nor the marginal distributions of the individual potential

failure times W1, . . . ,Wn are identifiable in general from observation of (T, J) only.

This follows from the so-called Cox-Tsiatis impasse, see Crowder [20, Ch. 7]. On

the other hand, these marginal and joint distributions are indeed of interest in

reliability applications, for example in connection with maintenance optimization.

An example is given in the next paragraph.

Consider the setup of Cooke [15, 16] involving a competing risks situation with

a potential failure of a unit at some time W1 and a potential action of preventive

maintenance to be performed at time W2. Thus n = 2, while C1 corresponds to

failure of the unit (J = 1), and C2 (J = 2) corresponds to the action of PM.

Knowing the marginal distribution of W1 would be particularly important since it

is the basic failure time distribution of the unit when there is no PM. However, as

noted above, the marginal distributions of W1 and W2 are not identifiable unless

specific assumptions are made on the dependence between W1 and W2. The most

common assumption of this kind is that W1 and W2 are independent, in which case

identifiability follows ([61],[20, Ch. 7]). However, this assumption is unreasonable

in the present application, since the maintenance crew is likely to have some infor-

mation regarding the unit’s state during operation. This insight is used to perform

maintenance in order to avoid a failure. Thus we are in practice faced with a situ-

ation of dependent competing risks between W1 and W2, and hence identifiability

of marginal distributions require additional assumptions.

Lindqvist, Støve and Langseth [49] suggested a model called the repair alert

model for describing the joint behavior of the failure time W1 and time W2 of PM.
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This model is a special case of random signs censoring, Cooke [15, 16], under which

the marginal distribution ofW1 is always identifiable. Recall thatW2 is said to be a

random signs censoring ofW1 if the event {W2 < W1} is stochastically independent

of W1, that is if the event of having a PM before failure is not influenced by the

time W1 at which the system fails or would have failed without PM. The idea is

that the system emits some kind of signal before failure, and that this signal is

discovered with a probability which does not depend on the age of the system. The

repair alert model extends this idea by introducing a so called repair alert function

which describes the “alertness” of the maintenance crew as a function of time.

Another possibility to obtain identifiability of the distributions of W1 and W2

would be to use the result of Zheng and Klein [64], which shows identifiability of

marginal distributions when the dependence is given by a known copula.

Return now to the general case. Suppose that the system is repaired after failure

and then put into operation, then may fail again, and so on. This leads to a marked

event process as described in Section 2 with marks in J = {1, 2, . . . , n}, so that the

mark at each event time is the number of the failing component (or more generally

the type of event).

The properties of this process depend on the repair strategy. Several classes of

interesting models can be described in terms of a generalization of the virtual age

concept introduced in Section 3.2, as discussed in the next subsection.

6.1. Virtual Age Models with Several Types of Events. Recall from Section 3.2

that the class of virtual age models generalize the perfect repair and minimal repair

models, and that the approach more generally leads to a large class of models. The

main inputs are a hazard function z(·), which is thought of as the hazard function

of a new unit, and a virtual age process which is a stochastic process which depends

on the actual repair actions performed.

Several generalizations of the standard imperfect repair models are found in
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the literature. Shaked and Shantikumar [60] suggested a multi-component imper-

fect repair model with components having dependent life-lengths. Langseth and

Lindqvist [38] suggested a model which involves imperfect maintenance and repair

in the case of several components and several failure causes. In a recent paper,

Doyen and Gaudoin [24] develop the ideas further by presenting a general point

process framework for modeling of imperfect repair by a competing risks situation

between failure and PM. Bedford and Lindqvist [8] considered a series system of n

repairable components where only the failing component is repaired at failures.

Inspired by the mentioned approaches, we suggest in this section a generalization

of the imperfect repair models to the case where there are more than one type of

events, and where the virtual age process is multidimensional.

We let the first part of a virtual age model for n components be given by a vector

process A(t) = (A1(t), . . . , An(t)) containing the virtual ages of the n components

at time t. The crucial assumption is that A(t) = (A1(t), . . . , An(t)) ∈ Ft−, which

means that the component ages are functions of the history up to time t.

As for the case with n = 1 in Section 3.2, it is assumed that the Aj(t) increase

linearly with time between events, and may jump only at event times. We define

vj(i) to be the virtual age of component j immediately after the ith event. The

virtual age process for component j is therefore defined by

Aj(t) = vj(N(t−)) + t− TN(t−).

The second part of a virtual age model in the case n = 1 consists of the haz-

ard function z(·). For general n we replace this by functions νj(v1, . . . , vn) for

v1, v2, . . . , vn ≥ 0, such that the conditional intensity of type j events, given the

history Ft−, is

γj(t) = νj(A1(t), . . . , An(t)).

Thus νj(v1, . . . , vn) is the intensity of an event of type j when the component ages

are v1, . . . , vn, respectively. The conditional intensity thus depends on the history

only through the virtual ages of the components.
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The family {νj(v1, . . . , vn) : v1, v2, . . . , vn ≥ 0} describes the failure mechanisms

of the components and the dependence between them in terms of the ages of all the

components. The basic statistical inference problem therefore consists of estimating

these functions from field data. The case n = 1 has already been discussed in

Section 3.2, but we shall see that identifiability problems can occur when n > 1.

6.2. Repair Models and their Virtual Age Processes. Most of the virtual age

processes considered for the case n = 1 can be generalized to the present case of

several event types. There are, however, often several ways of doing this. Some

examples are given below. Additional examples include generalizations of Kijima’s

[34] models, which may be plausible in applications.

6.2.1. Perfect repair of complete system. Suppose that all the components are

repaired to as good as new at each failure of the system. In this case we have

vj(i) = 0 for all j and i, and hence Aj(t) = t − TN(t−) for all j. It follows that

we can only identify the “diagonal” values νj(t, . . . , t) of the functions νj . As noted

in Section 6.3, these are given by the type-specific hazards defined in (14) for the

non-repairable competing risks case. This is not surprising in view of the fact that

the present case of perfect repair essentially corresponds to observation of i.i.d.

realizations of the non-repairable competing risks situation.

6.2.2. Minimal repair of complete system. In the given setting a minimal repair

will mean that following an event, the process is restarted in the same state as was

experienced immediately before the event. In mathematical terms, this implies that

vj(i) = Ti for all i, j and hence that Aj(t) = t for all j. Note that the complete

set of functions νj is again not identifiable. Moreover, for a single component it is

well known that minimal repair results in a failure time process which is an NHPP.

In the present case of several components which are minimally repaired, it follows

similarly that the failure processes of the individual components are independent

NHPPs with the intensity for component j given by νj(t, . . . , t), which as already
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noted equals the type-specific hazard (14).

6.2.3. A partial repair model. Bedford and Lindqvist [8] suggested a partial

repair model for the n component case. The virtual age process is defined by letting

Aj(t) = time since last event of type j. Equivalently, the process could be defined

by

vj(i) =







0 if Ji = j

vj(i− 1) +Xi if Ji 6= j.

Thus, the age of the failing component is reset to 0 at failures, whereas the ages of

the other components are unchanged. The authors considered a single realization of

the process, with the main result being that under reasonable conditions pertaining

to ergodicity, the functions νj(v1, . . . , vn) are identifiable. The intuitive idea of their

proof is that the ages v1, . . . , vn will mix in such a manner that the complete set of

νj(v1, . . . , vn) can be identified.

6.2.4. Age reduction models. Doyen and Gaudoin [24] consider a single com-

ponent or system and two types of events, C1 = failure, C2 = PM. In their basic

model the virtual ages of the two types of events are equal, A1(t) = A2(t) = A(t).

They indicate, however, that this restriction is not necessary. Various choices of vir-

tual age processes are considered. In particular they consider age reduction models

generalizing the ones mentioned at the end of Section 3.2. More precisely, assume

that there are given age reduction factors 0 < ρ1, ρ2 < 1 for the two types of events.

The virtual age immediately after the ith repair is then

v(i) = (1− ρJi)(v(i− 1) +Xi)

which means that the virtual age immediately before the ith failure, v(i−1)+Xi, is

reduced due to repair by the factor 1−ρJi . Alternatively, if only the additional age

Xi is reduced by the repair, it could be assumed that v(i) = v(i− 1)+ (1− ρJi)Xi.

6.3. Modelling of the Intensity Functions νj. In principle the functions νj(v1, . . . , vn)

could be any functions of the component ages. Bedford and Lindqvist [8] motivated
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these functions by writing, for j = 1, . . . , n,

(15) νj(v1, . . . , vn) = λj(vj) + λj∗(v1, . . . , vn)

with the convention that λj∗(v1, . . . , vn) = 0 when all the component ages except

the jth are 0, in order to have uniqueness. The λj(vj) is then thought of as the

intensity of component j when working alone or together with only new components,

while λj∗(v1, . . . , vn) is the additional failure intensity imposed on component j

caused by the other components when they are not all new. Note that any functions

of v1, . . . , vn can be represented this way, by allowing the λj∗ to be negative as well

as positive.

Langseth and Lindqvist [38] and Doyen and Gaudoin [24] extended the competing

risks situation between failure and PM, as described in the beginning of the present

section, and suggested how to define suitable functions νj . The main ideas of these

approaches can be described for general n as follows. Starting from a state where the

component ages are, respectively, v1, . . . , vn, let the time to next event be governed

by the competing risks situation between the random variables W ∗
1 , . . . ,W

∗
n with

distribution equal to the conditional distribution of W1 − v1, . . . ,Wn − v2 given

W1 > v1, . . . ,Wn > vn, where the Wi are the ones defined in the non-repairable

case described in the beginning of the section. It is then rather straightforward to

show that this implies

(16) νj(v1, . . . , vn) =
−∂jR(v1, . . . , vn)

R(v1, . . . , vn)

where R(v1, . . . , vn) = P (W1 > v1, . . . ,Wn > vn) is the joint survival function of

the Wi, and ∂j means the partial derivative with respect to the jth entry in R.

Note that this generalizes the usual hazard rate in the case n = 1 considered in

Section 3.2. Further, we have νj(t, t, . . . , t) = hj(t) where the latter is the type

specific hazard rate given in (14).

A final remark on the suggested construction of the functions νj is due. It was

demonstrated by Bedford and Lindqvist [8] that, even in the case with n = 2, it is
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not always possible to derive a general set of functions νj(v1, . . . , vn) from a single

joint survival distribution as in (16). A simple counter example was given in [8].

Thus for generality one should stick to completely general representations like (15).

7. Concluding Remarks. In the present paper we have reviewed some main

approaches for the analysis of data from repairable systems. To a large extent the

emphasis has been on describing the underlying principles and structures of com-

mon models. Essential features of such models correspond to the three “dimensions”

of the model-cube in Figure 3; renewal-property, time trend and heterogeneity. The

presentation has less emphasis on statistical inference than on modelling. However,

it has been an intention to show how likelihood functions are obtained for the dif-

ferent models. It is also indicated how covariates can be included in the models and

the corresponding likelihood functions. While the derived likelihood functions can

be used in a rather straightforward manner in parametric statistical inference, there

turn out to be several challenging problems connected to nonparametric estimation

in some of the models.

Two main types of models with rather simple and transparent basic structures

have been considered. These are the virtual age type models and the TRP type

models. The former type combines two basic ingredients, a hazard rate z(·) of a

new system together with a particular repair strategy which governs the virtual age

process A(t). The renewal dimension is taken care of by the virtual age process,

while trend is determined by the distribution of a new system. For the TRP(F, λ(·)),

the renewal dimension corresponds to the renewal distribution F , while the trend is

explicitly given by the trend function λ(·). For both types of processes, heterogeneity

can be included by multiplicative factors working on the intensities. A noticeable

difference between the two types of models is that the virtual age type model usually

requires that the virtual age process is observable. Such observations may, however,

often be lacking in real data.

Many processes show some degree of clustering of failures. This may be due to
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various causes, see for example Cox [17]. Several models have been suggested in the

literature, a classical one being the Neyman and Scott [54] model. As pointed out

by a referee, even the TRP model can pick up the clustering effect by allowing the

renewal distribution to be a mixture with a substantial amount of probability near

zero.

Peña [55] reviews a class of models suggested in Peña and Hollander [56]. This is a

virtual age model which includes the possibility of heterogeneity between systems,

time-dependent covariates, and for which in addition the conditional intensities

may depend on the number of previous events. This last feature adds an interesting

flexibility to the model. In particular it enables modelling of certain load sharing

processes and software failure processes.

Certain systems, for example alarm systems, are tested only at fixed times which

are usually periodic. If the system is found in a failed state, then it is repaired or

replaced. Thus repair is not done at the same time as the failure, and the situation is

not covered by the methods considered in the paper. A simple model of this situation

was suggested by Hokstad and Frøvig [30] and further studied and extended by

Lindqvist and Amundrustad [47]. Consider a system which starts the operation at

time t = 0 and is tested at time epochs τ, 2τ, 3τ, . . .. When time is running between

testing epochs, the state of the system is modelled by an absorbing Markov chain.

Having thus defined the probabilistic behavior of the system state between testing,

one needs to add to the model a specification of the repair policy. In Lindqvist and

Amundrustad [47] this is modelled in the form of a transition matrix on the state

space of the Markov chain, which defines the possible changes of state and their

probabilities following the repair actions.

In a given study there is usually a choice between several types of models. It is

thus important to have tools for model checking and goodness-of-fit procedures. For

model checking in parametric estimation of the HTRP-model we refer to Lindqvist

et al. [48], who use a type of Cox-Snell residuals together with plots using the

TTT technique. The general underlying idea, which in principle can be used with
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all estimation methods considered in this paper, is that the process of integrated

conditional intensities,
∫ T1

0
γ(t)dt,

∫ T2

0
γ(t)dt, . . ., is an HPP(1) (Brémaud [12]). In

turn this gives rise to computable residual processes when estimates are inserted

for parameters and distributions. The use of these processes in model checking is

demonstrated for three different data sets in [48]. Typically, one would check (i) the

distribution of the residuals with respect to departures from the unit exponential

distribution, (ii) the possible presence of time trends in residuals within each system,

(iii) the possible presence of autocorrelation in times between events in the residual

processes.
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[12] Brémaud, P. (1981). Point Processes and Queues: Martingale Dynamics. Springer, New

York.

[13] Brown, M. and Proschan, F. (1983). Imperfect repair. J. Appl. Probab. 20 851–859.

[14] Cook, R. J. and Lawless, J. F. (2002). Analysis of repeated events. Statistical Methods in

Medical Research 11 141–166.

[15] Cooke, R. M. (1993). The total time on test statistics and age-dependent censoring. Statist.

Probab. Lett. 18 307–312.

[16] Cooke, R. M. (1996). The design of reliability databases, Part I and II. Reliab. Eng. Syst.

Saf. 51 137–146 and 209–223.

[17] Cox, D. R. (1955). Some statistical methods connected with series of events (with discussion).

J. R. Stat. Soc. Ser. B Stat. Methodol. 17 129–164.

[18] Cox, D. R. (1972). The statistical analysis of dependencies in point processes. In Stochastic

Point Processes (P.A. Lewis, ed.) 55–66. Wiley, New York.

[19] Cox, D. R. and Lewis, P. W. (1966). The Statistical Analysis of Series of Events. Methuen,

London.

[20] Crowder, M. J. (2001). Classical competing risks. Chapman & Hall/CRC, Boca Raton.

[21] Crowder, M. J., Kimber, A. C., Smith, R. L. and Sweeting, T. J. (1991). Statistical

Analysis of Reliability Data. Chapman & Hall, Great Britain.

[22] Dorado, C., Hollander, M. and Sethuraman, J. (1997). Nonparametric estimation for a

general repair model. Ann. Statist. 25 1140–1160.

[23] Doyen, L. and Gaudoin, O. (2004). Classes of imperfect repair models based on reduction

imsart-sts ver. 2005/05/19 file: STS211Lindqvist.tex date: June 27, 2006



42 BO H. LINDQVIST

of failure intensity or virtual age. Reliab. Eng. Syst. Saf. 84 45–56.

[24] Doyen, L. and Gaudoin, O. (2006). Imperfect maintenance in a generalized competing risks

framework. To appear in J. Appl. Probab. 43.

[25] Elvebakk, G. (1999). Analysis of Repairable Systems Data: Statistical Inference for a Class

of Models Involving Renewals, Heterogeneity and Time Trends. Ph.D. dissertation. Depart-

ment of Mathematical Sciences, Norwegian University of Science and Technology, Trondheim,

Norway.

[26] Engelhardt, M. and Bain, L. J. (1987). Statistical analysis of a compound power-law model

for repairable systems. IEEE Trans. Reliab. R-36 392–396.

[27] Greenwood, M. and Yule, G. U. (1920). An enquiry into the nature of frequency distribu-

tions representative of multiple happenings with particular reference of multiple attacks of

disease or of repeated accidents. J. R. Stat. Soc. 83 255–279.

[28] Hall, P. (1985). Resampling a coverage pattern. Stochastic Process. Appl. 20 231–246.

[29] Heggland, K. and Lindqvist, B. H. (2006). A nonparametric monotone maximum likeli-

hood estimator of time trend for repairable systems data. To appear in Reliab. Eng. Syst.

Saf..

[30] Hokstad, P. and Frøvig, A. T. (1996). The modelling of degraded and critical failures for

components with dormant failures. Reliab. Eng. Syst. Saf. 51 189–199.

[31] Hollander, M., Presnell, B. and Sethuraman, J. (1992). Nonparametric methods for

imperfect repair models. Ann. Statist. 20 879–896.

[32] Hougaard, P. (1984). Life table methods for heterogeneous populations: Distributions de-

scribing the heterogeneity. Biometrika 71 75–83.

[33] Huang, C-Y. and Wang, M-C. (2004). Joint modelling and estimation for recurrent event

processes and failure time data. J. Amer. Statist. Assoc. 99 1153–1165.

[34] Kijima, M. (1989). Some results for repairable systems with general repair. J. Appl. Probab.

26 89–102.

[35] Kvaløy, J. T. and Lindqvist, B. H. (1998). TTT-based tests for trend in repairable systems

data. Reliab. Eng. Syst. Saf. 60 13–28.

[36] Kvaløy, J. T. and Lindqvist, B. H. (2003). A class of tests for renewal process versus

monotonic and nonmonotonic trend in repairable system data. In Mathematical and Sta-

tistical Methods in Reliability (B. H. Lindqvist and K. A. Doksum, eds.) 401–414. World

Scientific Publishing, Singapore.

[37] Kvist, K., Andersen, P. K. and Kessing, L. V. (2006). Repeated events and total time on

test. Research Report No. 7/2006. Institute of Public Health, University of Copenhagen.

[38] Langseth, H. and Lindqvist, B. H. (2003). A maintenance model for components exposed

to several failure mechanisms and imperfect repair. In Mathematical and Statistical Methods

imsart-sts ver. 2005/05/19 file: STS211Lindqvist.tex date: June 27, 2006



ANALYSIS OF REPAIRABLE SYSTEMS 43

in Reliability. (B. H. Lindqvist and K. A. Doksum, eds.) 415–430. World Scientific Publishing,

Singapore.

[39] Langseth, H. and Lindqvist, B. H. (2006). Competing risks for repairable systems: A data

study. J. Statist. Plann. Inference 136 1687–1700.

[40] Last, G. and Szekli, R. (1998). Stochastic comparison of repairable systems by coupling.

J. Appl. Probab. 35 348–70.

[41] Lawless, J. F. (1987). Regression methods for Poisson process data. J. Amer. Statist. Assoc.

82 808–815.

[42] Lawless, J. F. and Nadeau, C. (1995). Some simple robust methods for the analysis of

recurrent events. Technometrics 37 158–168.

[43] Lawless, J. F. and Thiagarajah, K. (1996). A point-process model incorporating renewals

and time trends, with application to repairable systems. Technometrics 38 131–138.

[44] Lewis, P. A. W. and Robinson, D. W. (1974). Testing for a monotone trend in a modulated

renewal process. In Reliability and Biometry. Statistical Analysis of Lifelengths (F. Proschan

and R. J. Serfling, eds.) 163–182. SIAM Philadelphia, PA.

[45] Lim, T. J. (1998). Estimating system reliability with fully masked data under Brown-

Proschan imperfect repair model. Reliab. Eng. Syst. Saf. 59 277–289.

[46] Lindqvist, B. (1999). Repairable systems with general repair. In Safety and Reliability.

Proceedings of the European Conference on Safety and Reliability, ESREL ’99 (G. Schueller

and P. Kafka, eds.) 43–48. Balkema, Rotterdam.

[47] Lindqvist, B. H. and Amundrustad, H. (1998). Markov models for periodically tested

components. In: Safety and Reliability. Proceedings of the European Conference on Safety

and Reliability - ESREL ’98 (S. Lydersen, G. K. Hansen and H. A. Sandtorv, eds.) 191–197.

Balkema, Rotterdam.

[48] Lindqvist, B. H., Elvebakk, G. and Heggland, K. (2003). The trend-renewal process for

statistical analysis of repairable systems. Technometrics 45 31–44.

[49] Lindqvist, B. H., Støve, B. and Langseth, H. (2006). Modelling of dependence between

critical failure and preventive maintenance: The repair alert model. J. Statist. Plann. Infer-

ence 136 1701–1717.

[50] Maguire, B. A., Pearson, E. S. and Wynn, A. H. A. (1952). The time intervals between

industrial accidents. Biometrika 39 168–180.

[51] Mann, H. B. (1945). Nonparametric tests against trend. Econometrica 13 245–259.

[52] Meeker, W. Q. and Escobar, L. A. (1998). Statistical methods for reliability data. Wiley,

New York.

[53] Nelson, W. (1995). Confidence limits for recurrence data - applied to cost or number of

product reapair. Technometrics 37 147–157.

imsart-sts ver. 2005/05/19 file: STS211Lindqvist.tex date: June 27, 2006



44 BO H. LINDQVIST

[54] Neyman, J. and Scott, E. L. (1958). A statistical approach to problems of cosmology. J.

R. Stat. Soc. Ser. B Stat. Methodol. 20 1–43.

[55] Peña, E. A. (2006). Dynamic modelling and statistical analysis of event times. Submitted

to Statist. Sci.

[56] Peña, E. A. and Hollander, M. (2004). Models for recurrent events in reliability and sur-

vival analysis. InMathematical Reliability: An Expository Perspective (R. Soyer, T. Mazzuchi

and N. Singpurwalla, eds.) 105–123. Kluwer Academic Publishers, Dordrecht, The Nether-

lands.

[57] Proschan, F. (1963). Theoretical explanation of observed decreasing failure rates. Techno-

metrics 5 375–383.

[58] Pham, H. and Wang, H. (1996). Imperfect maintenance. European J. Oper. Res. 94, 425–

428.

[59] Rausand, M. and Høyland, A. (2004). System reliability theory: Models, statistical methods,

and applications. 2nd ed. Wiley-Interscience, Hoboken, N.J.

[60] Shaked, M. and Shantikumar, J. G. (1986). Multivariate imperfect repair. Oper. Res. 34

437–448.

[61] Tsiatis, A. (1975). A nonidentifiability aspect of the problem of competing risks. Proc. Natl.

Acad. Sci. USA 72 20–22.

[62] Vaupel, J.W., Manton, K.G. and Stallard, E. (1979). The impact of heterogeneity in

individual frailty on the dynamics of mortality. Demography 16 439–454.

[63] Whitaker, L. R. and Samaniego, F. J. (1989). Estimating the reliability of systems subject

to imperfect repair. J. Amer. Statist. Assoc. 84 301–309.

[64] Zheng, M. and Klein, J.P. (1995). Estimates of marginal survival for dependent competing

risks based on an assumed copula. Biometrika, 82, 127–138.

Professor Bo H. Lindqvist,

Department of Mathematical Sciences,

Norwegian University of Science and Technology,

N-7491 Trondheim, Norway

Email: bo@math.ntnu.no

imsart-sts ver. 2005/05/19 file: STS211Lindqvist.tex date: June 27, 2006


	Introduction
	Notation and Basic Definitions
	Models for Repairable Systems with a Single Type of Events
	Perfect and Minimal Repair Models
	Imperfect Repair Models and the Virtual Age of a System
	Generalized Linear Model Types
	The Trend-Renewal Process

	Unobserved Heterogeneity in Repairable Systems
	Modelling of Heterogeneity for Repairable Systems
	Heterogeneity in the TRP Model, the HTRP Model
	The Three Dimensions of a Repairable System Description: The Model Cube and the Log-Likelihood Cube

	Trend Testing
	Graphical methods
	Nelson-Aalen plot
	TTT plot

	Statistical trend tests
	Tests of the Null Hypothesis of HPP
	Tests of the Null Hypothesis of RP
	Tests of the Null Hypothesis of Stationary Inter-failure Times
	Trend Tests Obtained as Likelihood Ratio Tests


	Repairable Systems with Several Types of Events
	Virtual Age Models with Several Types of Events
	Repair Models and their Virtual Age Processes
	Perfect repair of complete system
	Minimal repair of complete system
	A partial repair model
	Age reduction models

	Modelling of the Intensity Functions j

	Concluding Remarks
	Acknowledgements
	References

