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Abstract

It is well known that improper priors in Bayesian statistics may lead to proper posterior

distributions and useful inference procedures. This motivates us to give an elementary intro-

duction to a theoretical frame for statistics that includes improper priors. Axioms that allow

improper priors are given by a relaxed version of Kolmogorov’s formulation of probability

theory. The theory of conditional probability spaces formulated by Renyi is closely related,

but the initial axioms and the motivation differ. One consequence of the axioms is a general

Bayes theorem which gives proper posterior distributions, and furthermore, the theory also

gives a convenient frame for formulation of non-Bayesian statistical models. The results are

in particular relevant for the current usage of improper priors in Markov Chain Monte Carlo

methods, and for methods for simulation from conditional distributions given sufficient statis-

tics. This theory gives an alternative to ad hoc arguments without an underlying theory, and

removes apparent paradoxes. Readers that acknowledge the need for a theoretical basis for

statistical inference including improper priors are urged to consider the theory of conditional

probability spaces as presented here.

Keywords: Axioms of probability, Bayesian statistics, Conditional law, Marginalization

paradox, Posterior propriety, Admissibility
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1. INTRODUCTION

Let the prior knowledge regarding a parameter θ be given by a density π(θ). A statistical

model for the observation X with a density f(x | θ) gives the posterior density

π(θ |x) =
f(x | θ)π(θ)

f(x)
, (1)

where f(x) =
∫
f(x | θ)π(θ)dθ is the marginal density of X. Typically θ and X are vectors. It

is well known how to modify (1) if θ has a discrete distribution, or a more general distribution.

Equation (1) is one version of Bayes’ theorem.

The algorithm given by equation (1) is well defined as long as 0 < f(x) < ∞, but

the usual proof of the validity is restricted to the case where π(θ) is a probability density.

Nonetheless, Bayesian analysis is routinely carried out successfully without assuming π(θ) to

be a probability density. In principle π(θ) may be taken as any non-negative and non-null

function on the parameter space, and “success” means that the posterior density in (1) makes

sense.

The aim of this paper is to present the essential ingredients in a theory which allows densi-

ties π which are not probability densities, and in which a simple condition for the “properness”

of improper priors can be formulated. This theory has equation (1) as a consequence, includ-

ing cases where the prior is improper. The idea is simply to allow infinite probabilities in the

axioms of Kolmogorov (1933).

Somewhat surprisingly, all conditional distributions, derived using the Radon-Nikodym

theorem as in the case of ordinary probability theory, are still proper probability distributions.

Halmos and Savage (1949) justified this for finite measures, and it was later proved by Eaton

(1982) and Chang and Pollard (1997) that it holds more generally. The hook is just a certain

condition that needs to be satisfied for the variable that we condition on: It is only allowed

to condition on regular variables. This term was introduced by Renyi (1970). We will instead

refer to these variables as σ-finite, as explained in more detail later.

The presentation will not be mathematically complete. Technical terms similar to mea-

surable and almost everywhere will be avoided. This is not because the terms are unnecessary,

but is rather a choice given that it is hoped that readers without familiarity with measure
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theory should be able to follow the arguments. On the other hand, the mathematically ori-

ented reader should be able to fill in the necessary qualifiers. For an excellent introduction

to measure theory, and in particular the Radon-Nikodym theorem, we refer to Rudin (1987).

Kolmogorov (1933), Halmos (1950) and Renyi (1970) present most relevant and readable

alternatives with additional focus on probability theory.

2. KOLMOGOROV REVISITED

Probability theory, as formulated by Kolmogorov (1933), identifies every event A with a subset

of a fixed underlying abstract space Ω. The family E of events is assumed to be such that the

complementary event is an event, and so that countable intersections and unions of events are

events. It is furthermore assumed that Ω is equipped with a fixed law Pr with Pr(A) ≥ 0 for

A ∈ E , so that Pr(A1 ∪ A2 ∪ · · · ) = Pr(A1) + Pr(A2) + · · · whenever A1, A2, . . . are pairwise

disjoint events. These assumptions are exactly as in the original formulation (Kolmogorov,

1933), but Kolmogorov adds the axiom Pr(Ω) = 1. This will not be done here, and the case

Pr(Ω) =∞ will be allowed in the following.

A random quantity X, which takes values in a space ΩX , is as usual identified with a

function X : Ω→ ΩX . It is required that (X ∈ C) ={ω ∈ Ω |X(ω) ∈ C} is an event in Ω for

any event C in ΩX . This makes sense since it is also assumed that ΩX is equipped with a

family EX of events. Kolmogorov used this very powerful recipe which gives meaning to the

concept of random numbers, random vectors, random functions (stochastic processes), and

other random quantities that could be of interest. Here, and elsewhere, we use the convention

that capital letters are used for random quantities while the corresponding lower case ones

are realizations.

The crux of the assumption of a fixed underlying space Ω is that events given simultane-

ously by various different random objects are well defined. A somewhat theoretical example is

given by the event that the trajectory of a stochastic process is continuous and that it avoids

a random set. A more common example is that an n-tuple of random numbers is contained

in a specified open subset of Rn.
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The law PrX of a random quantity X is defined on EX by

PrX(C) = Pr(X ∈ C) (Kolmogorov, 1933, p.21, eq. (1)), (2)

which is well defined since (X ∈ C) ∈ E , and Pr is defined on E . The law Pr on Ω is hence

lifted to a law PrX for X on ΩX . Equation (2) will turn out to be one of the heroes in this

story. It survives also in the case Pr(Ω) =∞, which is necessary in our treatment of improper

priors.

3. MARGINAL AND JOINT LAWS

A particular consequence of equation (2) is that the law of X = (U, V ) determines the law of

U :

PrU (A) = Pr(U ∈ A) = Pr(U ∈ A, V ∈ ΩV ) = PrU,V (A× ΩV ). (3)

In this context, the law PrU of U is referred to as a marginal law, and the law PrU,V of (U, V )

is referred to as the joint law of U and V .

Equation (2), and the particular consequence (3), may seem innocent, but marks a dif-

ference between the theory presented here and the alternative theory presented by Hartigan.

The following quote demonstrates this explicitly (Hartigan, 1983, p.23):

It is assumed therefore that the joint distribution, the conditional distribution, and

the marginal distribution are specified separately to follow the axioms of conditional

probability.

Chang and Pollard (1997, p.308) assume that T = (X,Y, Z) is a quantity with uniform

distribution on ΩT = (0, 1)2×R, and argue along the lines of Hartigan to reach the conclusion:

Is there any paradox in (X,Y ) appearing to have several different joint distribu-

tions? We think not.

This is in contrast to the point of view presented here: The marginal distribution of a

random quantity U is uniquely determined by the joint distribution of a random quantity

(U, V ) as in equation (3). The distribution of U = (X,Y ) is hence in particular uniquely
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determined by the distribution of (U, V ) = (X,Y, Z), in contrast to the conclusion of Chang

and Pollard.

More generally, the distribution of any quantity Y = φ(X) is uniquely determined by the

distribution of X by equation (2):

PrY (A) = Pr(Y ∈ A) = Pr(φ(X) ∈ A) = PrX(φ ∈ A). (4)

This makes sense with the interpretation (φ ∈ A) = {x ∈ ΩX |φ(x) ∈ A}. The previous

special case follows from φ(u, v) = u. Equation (2) ensures that each random quantity has

one, and only one, law.

It is not argued that the approach given by Hartigan is in any way wrong, but it is argued

that our approach gives a reasonable alternative. The examples used by Hartigan (1983,

p.23) and Chang and Pollard (1997, p.308) will be discussed further in Section 7. It will be

explained that the theory described by Hartigan rejects our hero: equation (2). He insists

instead on one version of the concept of a disintegration, a generalization of product measure,

as a basis for the definition of conditional probabilities.

4. CONDITIONAL LAWS

A precise formulation of the concept of conditional laws in probability theory needs a bit

of measure theory. The highlight is then the application of the celebrated Radon-Nikodym

theorem (Halmos, 1950). It is fortunate that the relaxation of Kolmogorov’s axioms to include

an improper and σ-finite law Pr allows a straightforward extension of the classical arguments.

A law Pr is σ-finite if there exist events A1, A2, . . . with Ω = ∪iAi and Pr(Ai) < ∞ for

i = 1, 2, . . .. A random quantity Θ is said to be σ-finite if the law PrΘ is σ-finite.

Now, a unique conditional probability Prθ(A) = Pr(A|Θ = θ) for A ∈ E can be shown

to exist if Θ is a σ-finite random quantity. The conditional law Prθ is furthermore always a

probability law in the sense that Prθ(Ω) = 1. A sketch of the argument, which requires some

knowledge of measure theory, is presented next.

A desired property of the conditional law is the identity

Pr(A ∩ (Θ ∈ B)) =

∫
B

Prθ(A) PrΘ(dθ). (5)
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This can in fact be taken as the defining property of Prθ(A). The Radon-Nikodym theorem

states exactly that the function g(θ) = Prθ(A) exists and is uniquely defined by (5): The

function g is the density of the measure µ(B) = Pr(A∩ (Θ ∈ B)) with respect to the σ-finite

PrΘ. The required absolute continuity is satisfied since PrΘ(B) = Pr(Θ ∈ B) = 0 implies

Pr(A∩ (Θ ∈ B)) = 0. The normalization Prθ(Ω) = 1 follows from Pr(Θ ∈ B) =
∫
B 1 PrΘ(dθ).

The key in the above arguments is simply that the Radon-Nikodym theorem allows σ-

finite laws, and the above classical argument can be used also in this case. More surprising

is perhaps the conclusion that the resulting conditional law is always a probability law with

Prθ(Ω) = 1, and in particular also in the case where Pr(Ω) = ∞. This normalization is also

emphasized by Halmos and Savage (1949, p.230). They give an argument essentially as above,

but restricted to the case where Pr(Ω) is bounded but not necessarily a probability measure.

The more general case with a σ-finite law is treated by Eaton (1982) and Chang and Pollard

(1997).

The conclusion is that the conditional law Prθ is well defined and unique for any σ-finite

random quantity Θ. It is, however, almost of equal importance to note that the conditional

law Prθ is not defined when Θ is not σ-finite.

5. TOWARD STATISTICS

In some sense, statistics generalizes probability theory by the addition and focus on the

concept of parameters. In Bayesian statistics, parameters are furthermore interpreted as

random quantities. It is hence natural to represent a parameter θ by a function Θ : Ω→ ΩΘ,

and let PrΘ(A) = Pr(Θ ∈ A) define the law of Θ just as in equation (2). The law PrΘ is the

prior distribution of Θ.

It is common practice in statistical theory to assume that the sample space ΩX and the

parameter space ΩΘ are given without any link to an underlying fixed space Ω (Lehmann,

1959; Schervish, 1995). The additional assumption of a fixed underlying abstract space will

however soon be demonstrated to be most convenient, just as in the original formulation of

probability theory by Kolmogorov (1933).

Recall now the point of depature of the present study, which is to study the consequences of
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allowing improper priors. Thus, assume that PrΘ(ΩΘ) =∞, with the additional requirement

that Θ is σ-finite. It can be recalled that this means that there is a disjoint partition ΩΘ =

A1∪A2∪· · · where PrΘ(Ai) <∞ for all i. The additional observation that Ω = (Θ ∈ ∪iAi) =

∪i(Θ ∈ Ai) gives that Pr is also by necessity improper and σ-finite, since Pr(Ω) = PrΘ(ΩΘ) =

∞ and Pr(Θ ∈ Ai) = PrΘ(Ai) <∞.

Thus, by allowing the law of Θ to be improper and σ-finite, we are forced to assume that

Pr is improper and σ-finite. Note, however, that the σ-finiteness of Pr does not imply that

every random quantity defined on Ω is σ-finite. As we shall see later, this issue is closely

related to the problem of propriety of posterior distributions.

A simple example of a random quantity X with a law which is not σ-finite follows. Assume

as above that Pr(Ω) = ∞ and that Pr is σ-finite. Let X(ω) = 1 for all ω ∈ Ω. It follows

that PrX(A) equals 0 or ∞, with PrX(A) = ∞ if 1 ∈ A, and no countable partition of the

sample space ΩX into sets with finite measure can be found. Note also that Pr(Ω) = ∞

implies more generally that every random quantity has an improper law. This represents,

however, no hindrance for doing statistical inference since every conditional law turns out to

be a probability law with Prθ(Ω) = 1, and the focus will be on the conditional laws.

6. STATISTICAL MODELS

The conditional law PrθX of a random quantity X given a σ-finite random quantity Θ is

defined by

PrθX(A) = Prθ(X ∈ A). (6)

Equation (6) can be seen as the second hero in this story as it generalizes equation (2). The

assumption of a fixed underlying space Ω ensures that both X and Θ are identified with

functions on Ω, and this makes it possible to use equation (6) as a definition since Prθ is

a law on Ω by equation (5) and (X ∈ A) is an event in Ω. It follows in particular that

PrθX(ΩX) = Prθ(X ∈ ΩX) = Prθ(Ω) = 1, so PrθX is a probability law.

The resulting family {PrθX} of conditional laws in (6) corresponds exactly to what is usually

referred to as a statistical model, where X is the observation and θ is the model parameter. As

noted in the introduction, ΩX and ΩΘ are usually subsets of finite dimensional vector spaces,
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but non-parametric analysis is included since any space equipped with a family of events is

allowed. In non-Bayesian analysis the family {PrθX} is usually specified. Bayesian analysis

requires the additional specification of the law PrΘ, which is then the prior law for Θ.

The important point is that in the framework defined here, the laws for X for given

parameter values θ are always probability laws. On the other hand, prior laws are allowed to

be improper, but are required to be σ-finite.

Having thus seen how the model and the prior law are represented in a natural way in

our framework, it remains to consider the posterior law. In the notation introduced above,

the posterior law of Θ given X = x is simply PrxΘ. This is well defined if X is σ-finite.

It is important to stress that the required σ-finiteness of X is not guaranteed, and hence

has to be checked in each case. This is in effect precisely what is done in papers proving

posterior propriety. Berger et al. (2005, p.617) give good examples which demonstrate that

posterior propriety and admissibility properties are determined by a study of the marginal

law of the data X. Their proofs of propriety are actually also proofs of the σ-finiteness of the

marginal law PrX of the data X. Eaton (2004) considers explicitly cases with a σ-finite X,

and explains a most interesting characterization of admissibility in terms of recurrence of an

associated symmetric Markov chain (Hobert et al., 2007).

The framework presented here gives the probably most general result available regarding

posterior propriety: Posterior propriety is ensured if the marginal law of the data is σ-finite.

This is an “if and only if result” in the sense that the posterior law is even not defined when

the data has a marginal law which is not σ-finite. Properness of a prior law can hence be

defined by σ-finiteness, and for Bayesian analysis by the additional property that the resulting

marginal law of the data is σ-finite.

7. ARE MARGINALS UNIQUE?

Yes, marginal laws are uniquely determined by the joint law. As explained previously, the hero

in our story, equation (2) has the law of propagation of laws equation (4) as a consequence,

and the uniqueness of the marginal law in equation (3) is a special case of this.

It was also mentioned earlier that the answer is no if the alternative axioms presented by
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Hartigan (1983) are chosen as a basis instead. A consequence is hence that Hartigan abandons

the law of propagation of laws.

The difference between the two alternative sets of axioms will be elaborated further by a

reconsideration of three illustrative examples found in the literature. The first is our favorite,

and the next two are included as promised at the end of Section 3.

Gelfand and Sahu (1999, p.250) give the following example to demonstrate possible prob-

lems with marginal laws for improper priors. The example demonstrates nicely how seemingly

reasonable arguments may give contradictions if there is no reference to an underlying theory.

It also demonstrates some further properties of the theory.

Let (X,Y ) be a random vector with uniform law on ΩX,Y = {1, 2} ×N. We assume then

that PrX,Y ({x, y}) = 1 for all points (x, y) in ΩX,Y . Intuitively, according to Gelfand and

Sahu, it seems that the marginal law of X is the uniform probability on the two point set

ΩX = {1, 2}.

Define (U, V ) = φ(X,Y ), where φ(1, y) = (1, y), φ(2, 2y) = (2, y), and φ(2, 2y−1) = (3, y).

This gives a one-one mapping from ΩX,Y onto ΩU,V = {1, 2, 3}×N. The uniform law for (X,Y )

is mapped into a uniform law for (U, V ) by the rule for propagation of laws in equation (4).

As explained earlier, this is due to the hero in our story: equation (2).

The intuition referred to above now gives that the marginal law of U is the uniform

probability on ΩU = {1, 2, 3}. The event (X = 1) equals the event (U = 1), but the above

intuitive argument gives the seemingly paradoxical result:

“1/2 = Pr(X = 1) = Pr(U = 1) = 1/3“.

It will now be explained how this marginalization paradox can be resolved.

As previously explained, every unconditional law is improper if Pr is improper: If Z is

a random quantity, then PrZ(ΩZ) = Pr(Ω) = ∞. This holds in particular for the random

variables X,Y, U, V in the example. Intuitively, and this intuition can be proved to be correct,

the laws of X , Y , U , and V are all uniform by symmetry. Since both ΩX and ΩU are finite this

implies that PrX{x} = ∞ = PrU{u}. The event (X = 1) equals the event (U = 1), and the

particular result Pr(X = 1) = ∞ = Pr(U = 1) partly resolves the previous marginalization

paradox.
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Both X and U exemplify existence of variables with laws of the form ∞ · µ, where µ is

counting measure. The theory presented by Hartigan (1983) does not allow laws like this,

but we are forced to do so by insisting on the validity of equation (2).

The variables X and U are hence not σ-finite, but the variables Y and V are σ-finite:

Pr(Y = y) =
∑

x Pr(Y = y,X = x) = 2, and similarly Pr(V = v) = 3. The σ-finiteness

ensures that both conditional laws Pry and Prv exist, and a calculation gives that PryX and

PrvU are uniform probability laws on {1, 2} and {1, 2, 3}, respectively. The result is

1/2 = Pry(X = 1) 6= Prv(U = 1) = 1/3,

which is not paradoxical at all.

The elementary marginalization paradox given by the Gelfand and Sahu (1999, p.250)

example has now been explained, and there is no paradox left. The more famous marginal-

ization paradoxes presented by Stone and Dawid (1972) and Dawid et al. (1973) can be given

a similar non-paradoxical explanation. A more recent and important example related to

the correlation coefficient in a bivariate normal distribution is presented by Berger and Sun

(2008). The marginalization paradox in that case can also be explained as above.

An alternative view of the marginalization paradoxes is given by Hartigan (1983) and

Chang and Pollard (1997), but their conclusions are also that the seemingly paradoxical

results are explained as non-paradoxical. We hope that the readers can appreciate that there

really are some advantages of having a well defined theory as a basis for argumentation.

These advantages are shared by the approach presented here and the alternative approach

of Hartigan. This can be contrasted with the more loose approaches which are commonly

followed.

Hartigan (1983, p.23) considers factorizations of the form p(x, y) = p(x | y)p(y) for a law

Pr(X = x, Y = y) = p(x, y) on ΩX,Y = N × N. The uniform case p(x, y) = 1 gives the

law p(y) = ∞ in our theory, and the conditional law p(x | y) does not exist. Hartigan takes

the opposite point of view and requires that the factorization p(x, y) = p(x | y)p(y) remains

valid, and concludes that the marginal law p(y) can be specified arbitrarily as long as the

factorization remains valid. The particular choice p(y) = 1 gives p(x | y) = 1. It can also be
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noted from this example that the conditional density p(x | y) in the sense of Hartigan needs

not be a probability density.

As described earlier, Chang and Pollard (1997, p.308) considered a quantity (X,Y, Z) with

uniform law on (0, 1)2×R, and concluded that the marginal law of (X,Y ) could be rather ar-

bitrary. This can be understood in the sense of Hartigan since there exist many factorizations

of the form PrX,Y,Z(dx, dy, dz) = g(z |x, y)f(x, y) dxdydz with g(z |x, y)f(x, y) = 1.

8. DISCUSSION

The most common case in applications is given by PrθX(dx) = f(x | θ)dx and Prθ(dθ) =

π(θ)dθ. Equation (2) implies PrX(A) =
∫
A f(x)dx, where f(x) =

∫
f(x | θ)π(θ)dθ. Further-

more, it follows from the uniqueness of the conditional law defined by equation (5) that the

posterior law PrxΘ can be computed from (1) as promised, but X must be σ-finite.

It should be noted that ∞ is in general a possible value for f(x). It can be proved that a

necessary and sufficient condition for σ-finiteness of PrX is that f(x) <∞ for (almost) all x.

This condition is the one that is usually looked for in Bayesian applications, and the theory

presented here gives a theoretical basis for this.

We have already emphasized that all marginal laws in the setup are improper, while all

conditional laws are probability laws. If we would still like to include a finite law as a prior,

then we need to define it as a conditional law given some other parameter. Depending on the

context this can be referred to as a hyper-parameter.

It was explained in the previous section that the mere existence of a factorization PrX,Y (dx, dy) =

f(x | y)f(y) dxdy is not sufficient to conclude that f(y) is the marginal density of Y , and that

a conditional density f(x | y) exists. This view is shared by Halmos and Savage (1949, p.230)

as they explain in a footnote. Consider in particular the case where the prior law of the pa-

rameter (Θ1,Θ2) is given by the product law π1(θ1)dθ1 π2(θ2)dθ2. It does not follow generally

that π1(θ1)dθ1 is the law of Θ1; this follows only if π2 is a probability density. In that case it

also follows that π2 is the conditional density of Θ2 given Θ1 = θ1.

The discussion given by Berger and Sun (2008) demonstrates the fact that the Bayesian

algorithm with improper priors is of considerable importance also in non-Bayesian analysis.
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Incidentally, the original motivation for the work presented here gives another example of the

usage of improper priors in a strictly non-Bayesian problem: Improper priors are essential in

the algorithm for simulation from the conditional distribution given a sufficient statistic as

presented by Lindqvist and Taraldsen (2005), with calculation of exact p-values as one main

example.

Renyi (1970) introduced and motivated the concept of conditional probability spaces in-

dependently of the previous arguments. His initial motivation is not given by statistical

inference, but rather the intuition that conditional probability is the fundamental concept.

Consequently he gives a definition of a conditional probability space based on a family of

objects Pr(A |B). This is in line with the arguments given by Jeffreys (1961), in which all

probabilities are conditional probabilities. Renyi’s theory is, however, not too well known by

statisticians.

An elaboration of the close connection between the theory of Renyi and the approach here

requires the precise language of measure theory, and will not be explained further. It follows

from this elaboration, however, that the theory of conditional probability spaces naturally

leads to the modification of the axioms of probability presented in Section 2.

It can hence be concluded that the theory of Renyi is a generalization of the theory of

Kolmogorov which gives a natural theoretical frame for the formulation of general statistical

models. A characteristic feature of this frame is that both parameters and observations are

represented by functions defined on a common underlying space Ω. Because of this we will

suggest that the term conditional probability space is used for Ω in the case described in

Section 2. The case Pr(Ω) = ∞ where Pr is a σ-finite law is allowed, and Pr(Ω) = ∞ is

necessary if improper priors are to be included.
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