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Abstract: A new method for nonparametric censored exponential regression,
called the covariate order method, is presented. It is shown that the method
leads to a consistent estimator of the hazard rate as a function of the covariate.
Moreover, interesting applications to more general cases of lifetime regression
are presented. Possible applications include the construction of tests for covari-
ate e�ect and estimation and residual plots in Cox regression models. The key
is here to perform suitable transformations to exponentiality before applying
the covariate order method.
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1.1 Introduction

Suppose the lifetime of a unit has a distribution which depends on a covariate
vector x. Hazard regression means to estimate the hazard as a function of both
time and of the covariate vector, based on censored survival data. Exponential
regression is the special case when the hazard functions �(x) are constant in
time.

Apparently, exponential regression models should be easier to �t than more
general hazard regression models because of the time-independence in the haz-
ard. On the other hand, it is often possible to transform lifetime data in a
sensible way to follow, at least approximately, an exponential regression model.
Thus it might be a good idea to use statistical methods for exponential re-
gression to solve problems in more general hazard regression models. This is a
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major motivation for the present paper.

The literature contains a number of estimation methods for censored expo-
nential regression. Parametric estimation is most conveniently done by �tting
a generalized linear model. Various approaches which can be used for non-
parametric estimation of �(x) have furthermore been suggested. For example,
Hastie and Tibshirani (1990) consider estimation in generalized additive mod-
els as a natural nonparametric extension of generalized linear models. Other
approaches are reviewed in Kval�y and Lindqvist (2003).

In this paper we study a new nonparametric method for exponential regres-
sion, called the covariate order method. As will be clear from the presentation
in the next section, the covariate order method in its basic form rests heavily on
the assumption of exponentially distributed lifetimes. In fact, the estimate of
�(x) would have no meaning if the same procedure was tried on non-exponential
lifetimes. However, as indicated above, many problems can be reduced to ex-
ponential regression by transforming the data. The covariate order method has
turned out to be a useful approach in such applications. For example, Kval�y
(2002) used the covariate order method to suggest tests for covariate e�ect in
general censored regression models (see Section 1.2.4 of the present paper), while
Kval�y and Lindqvist (2003) used the covariate order method in nonparametric
estimation of covariate functions in Cox regression (see Section 1.3).

The main purpose of the present paper is to give a formal presentation of
the covariate order method and its practical implementation (Sections 1.2.1-
1.2.3), and in addition to give a rigorous proof of consistency of the method in
the single covariate case (Section 1.4). In order to illustrate the direct method
we give an example with exponential data in Section 1.2.5. Sections 1.3.1 and
1.3.2 illustrate the use of the covariate order method to transformed data. More
precisely it is shown how to make illustrative residual plots based on Cox-Snell
residuals in Cox regression models, and how the method can be used to suggest
possible transformations of covariates.

1.2 The covariate order method for exponential re-

gression

The basic formulation of the problem is as follows. Assume that we have
n independent observations (T1; Æ1;X1); : : : ; (Tn; Æn;Xn) of the random triple
(T; Æ;X), where T = min(Z;C), Æ = I(Z � C) and X is a vector of covariates.
For givenX = x, Z is assumed to be exponentially distributed with an unknown
hazard rate �(x), that is fZ(tjx) = �(x) exp(��(x)t).

Further, C is distributed according to some unknown censoring distribution
fC(tjx) which may depend on x, and C is assumed to be independent of Z given
X. Let Z be called the lifetime, C the censoring time and T the observation
time. This terminology is introduced only for convenience; Z can be any kind
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of exponentially distributed variables.

The domain of the covariate vector X is a subset X of Rm , andX is assumed
to be distributed according to some density function fX(x). The corresponding
cumulative distribution function is denoted FX(x). The covariates are assumed
to remain constant over time, and �(x) is assumed to be continuous on X . The
method is �rst described for the case of a single covariate, in other words for
m = 1. Extensions to higher dimensions are discussed in Section 1.2.3.

1.2.1 Method description and main theoretical results

The method proceeds conditionally on X1; : : : ;Xn and starts by �rst arranging
the observations (T1; Æ1;X1); : : : ; (Tn; Æn;Xn) such that X1 � X2 � � � � � Xn.
Next, for convenience, divide the observation times by the number of observa-
tions, n. Then let the scaled observation times T1=n; : : : ; Tn=n, irrespectively
if they are censored or not, be subsequent inter-arrival times of an arti�cial
point process on a time axis s. For this process, let points which are end-
points of intervals corresponding to uncensored observations be considered as
events, occurring at times denoted S1; : : : ; Sr where r =

Pn
j=1 Æj . This is

visualized in Figure 1.1, for an example where the ordered observations are
(T1; Æ1 = 1); (T2; Æ2 = 0); (T3; Æ3 = 1); : : : ; (Tn�1; Æn�1 = 0); (Tn; Æn = 1).

-

0 S1 S2 Sr s

1

n
T1z }| { 1

n
T2z }| { 1

n
T3z }| { 1

n
Tnz }| {. . .

Figure 1.1: Construction of arti�cial process.

More precisely, Si =
Pk(i)

j=1 Tj=n where k(i) = minfsjPs
j=1 Æj = ig. Now

the conditional intensity of the process S1; : : : ; Sr at a point w on the s-axis,
given the complete history of the Tj up to s, equals n�(XI) where I is de�ned

from
PI�1

i=1 Ti=n < w �PI
i=1 Ti=n. The basic idea is to estimate this intensity

from the process S1; : : : ; Sr, yielding the estimator �̂n(w), and then invert the
relation n�̂(XI) = �̂n(w) to obtain an estimate of �̂(x) at given points x. The
key here is the relationship between X1; : : : ;Xn on the \covariate-axis" and
the process S1; : : : ; Sr on the \s-axis". A possible way of estimating such a
relationship is to use the step-function

~s(x) =
1

n

jX
i=1

Ti; Xj � x < Xj+1; (1.1)

see Figure 1.2 for an illustration, and then de�ne �̂(x) = �̂n(~s(x))=n.
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The motivating idea of the method is that if �(x) = � is constant, then the
process S1; : : : ; Sr is a homogeneous Poisson process. (The test presented in
Section 1.2.4 is in fact based on this observation.) Thus if �(x) is reasonably
smooth and not varying too much, then the process S1; : : : ; Sr could be imagined
to be nearly a nonhomogeneous Poisson process for which the intensity can
be estimated by for instance kernel density estimation based on the points
S1; : : : ; Sr. Combining this kernel estimate and (1.1) leads to an estimate of
�(x). The estimator arising from this heuristic reasoning is the one presented
below, but more precise arguments are needed to derive the estimator formally
and to prove its consistency. All proofs are given in Section 1.4.

Let Fn
s be the history of the process S1; : : : ; Sr in the interval [0; s). This

history is formally de�ned as the sub-�-algebra Fn
s = �fX1; : : : ;Xng [ �fSj :

Sj � sg for s � 0. Note that X1; : : : ;Xn is contained in all the Fn
s . Let

�n(sjFn
s ) be the conditional intensity of the process S1; : : : ; Sr at the point s

(Andersen et al. 1993, p. 75). Then the �rst step in the formal derivation of a
consistent estimator for �(x) is Theorem 1.2.1 below. This theorem states that
the scaled conditional intensity of the process S1; : : : ; Sr converges in probability
to a deterministic function of �(�), and gives an asymptotic relation between
the processes running on the s-axis and the covariate axis respectively.

Theorem 1.2.1 Let the situation be as described above and in the formu-
lation of the problem at the beginning of the section. Further assume that
supx2X �(x) �M <1, infx2X �(x) � a > 0, and that supx2X �

0(x) � D <1.
The conditional distribution of C given x is assumed to have �nite �rst and
second order moments and fC(tjx) is assumed to have bounded �rst derivative
in x for all x 2 X . Then

�n(sjFn
s )=n

p! �(�(s))

as n!1 uniformly in s, where �(s) is a deterministic function from the s-axis
to the covariate axis, the inverse of which is given by

s(x) = E(TI(X � x)):

The function s(x) is called the correspondence function. Note that for the
special case of no censoring, s(x) can be written s(x) =

R x
�1

(fX(v)=�(v))dv.

The fact that the scaled conditional intensity of the process S1; : : : ; Sr con-
verges uniformly to �(�(s)) can be used to derive an estimator for �(x) by
estimating the inverse function s(x) and �n(sjFn

s )=n. As a �rst step we state
the following lemma.

Lemma 1.2.1 Let the situation be as in Theorem 1.2.1. Then ~s(x) in (1.1) is
a uniformly consistent estimator of s(x).
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Finally, a uniformly consistent estimator of �(x) is established by the fol-
lowing theorem.

Theorem 1.2.2 Let the situation be as in Theorem 1.2.1. Further let K(�) be
a positive kernel function which vanishes outside [-1,1] and has integral 1, and
let hs be a smoothing parameter which is either constant or varying along the
s-axis. Assume that hs ! 0 as n ! 1 for all s. Further assume that there is
a sequence hn such that hs � hn for all s; n where nhn !1 as n!1. Then
the estimator

�̂(x) =
1

nhs

rX
i=1

K

�
~s(x)� Si

hs

�
; x 2 X (1.2)

is a uniformly consistent estimator of �(x).

1.2.2 Smoothing details

In practical use the estimated correspondence function (1.1) may be replaced
by more sophisticated estimators, ŝ(x), improving on the smoothness of the
estimator (1.2). We have used the super-smoother of Friedman (1984), but in
practice this choice of smoother is not important.

To avoid the estimate �̂(x) to be seriously downward biased near endpoints
special care must be taken at the boundaries. Viewed only as a problem on the
s-axis the estimator (1.2) is simply (scaled) density estimation on the s-axis,
and techniques for handling boundary problems in density estimation can be
adopted. A common technique is to re
ect the data points around both end-
points, see for example Silverman (1986), corresponding to using the estimator

�̂(x) =
1

nhs

rX
i=1

�
K(

ŝ(x)� Si
hs

) +K(
ŝ(x) + Si

hs
) +K(

ŝ(x) + Si � 2S

hs
)

�
; (1.3)

where S =
Pn

j=1 Tj=n.
The smoothing parameter hs corresponds to smoothing over a certain amount

of the data on the s-axis. On the covariate axis, a corresponding smoothing
parameter hx which covers approximately the same amount of the data can be
de�ned via the relation between the points on the s-axis and the covariate axis.
See the right plot in Figure 1.2 for a rough description of the idea. If one of
the smoothing parameters, hs or hx, is held constant, the other will in general
be varying (or both can be varying). Whereas a constant hs corresponds to
ordinary density estimation on the s-axis, a constant hx corresponds to what is
commonly used in nonparametric regression methods. If a constant hx is used,
then (1.3) becomes

�̂(x) =
1

nhs(ŝ(x))

rX
i=1

�
K(

ŝ(x)� Si
hs(ŝ(x))

) +K(
ŝ(x) + Si
hs(ŝ(x))

) +K(
ŝ(x) + Si � 2S

hs(ŝ(x))
)

�
;

(1.4)
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Figure 1.2: The left plot shows an example of what the estimated correspondence
function ~s(x) (1.1) might look like. The right plot illustrates a smoothed correspon-
dence function estimate ŝ(x) and the relationship between the smoothing parameter
on the covariate axis and the s-axis.

where hs(ŝ(x)) = ŝ(x + hx=2) � ŝ(x � hx=2). For instance likelihood cross-
validation can be used as criterion for choosing the \best" value of the smooth-
ing parameter.

1.2.3 Several covariates

The covariate order method is not directly generalizable to higher dimensions,
mainly because Rm is not linearly ordered for m > 1. Thus instead we suggest
to reduce the dimension of the problem by assuming some structure on the
covariate space. One way to proceed is to assume that the hazard rate can be
written in the form of a generalized additive model

�(x) = exp(�+ g1(x1) + : : :+ gm(xm)); (1.5)

where x = (x1; : : : ; xm) 2 X � R
m , and where g1(�); : : : ; gm(�) are unspeci�ed

smooth functions. These functions can be estimated by the covariate order
method using an iterative back�tting algorithm. The key point is that if Z
is exponentially distributed with parameter exp(� + g1(x1) + : : : + gm(xm)),
then Z exp(� + g1(x1) + : : : + gj�1(xj�1) + gj+1(xj+1) + : : : + gm(xm)) will
be exponentially distributed with parameter exp(gj(xj)). Also note that it is
possible to let some of the g-functions be parametric, for instance for discrete
covariates.

1.2.4 Testing for covariate e�ect

Recall from Section 1.2.1 that if there is no covariate e�ect, that is �(x) � �,
then the process S1; : : : ; Sr is a homogeneous Poisson process (HPP). This ob-
servation suggests that in principle any statistical test for the null hypothesis
of an HPP versus various non-HPP alternatives can be applied to test for co-
variate e�ect in exponential regression models. Moreover, such an approach
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can be extended to non-exponentially distributed lifetimes by transforming the
observation times to approximately exponentially distributed data.

A detailed account of this approach for testing for covariate e�ect in lifetime
data is given by Kval�y (2002), who presents a number of di�erent tests based
on the covariate order method. The recommendation is to use an Anderson-
Darling type test which turns out to have very good power properties against
both monotonic and non-monotonic alternatives to constant �(x).

1.2.5 Example: Cardiac arrest versus air temperature

We give an example of direct application of the covariate order method to data
for times of out-of-hospital cardiac arrests reported to a Norwegian hospital
over a 5 years period. The relationship between outdoor air temperature and
the occurrence of cardiac arrest is investigated. A simple �rst analysis of this
relationship is done by regarding inter-event times to be independent and ex-
ponentially distributed with a hazard rate �(x) depending on the temperature
x. The average temperature on the day of a cardiac arrest is used as covariate
for the next period between cardiac arrests. A total of 449 cardiac arrests were
reported during the �ve years period.

Testing the signi�cance of the covariate e�ect of temperature by using the
Anderson-Darling test for covariate e�ect mentioned in Section 1.2.4 yielded a
p-value of 0.002. Plots of the estimated model are displayed in Figure 1.3. The
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Figure 1.3: Analysis of cardiac arrest occurrence versus air temperature. The
left plot shows the estimated hazard rate function obtained using a constant
smoothing parameter on the x-axis, with the location of the observations along
the curve displayed by the dots. The right plot shows 250 bootstrap curves
obtained by resampling observations (original estimate shown as white curve).

estimated hazard rate function clearly indicates a decreasing hazard for increas-
ing temperature. The smoothing parameter hx = 15 was chosen by a likelihood
cross validation criterion. The bootstrap curves indicate little variability in
the estimated hazard rate in the middle temperature range where most of the
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observations are located, while there is large variability at the boundaries as
expected.

1.3 Applications in Cox regression

The covariate order method has various applications in Cox regression (Cox,
1972). For instance, consider the generalized Cox model with hazard function
�(tjx) = �0(t) exp(g(x)) where g(x) in principle is any smooth function of the
covariate vector x. If Z is an uncensored observation from this model, then it is
well known that given X the transformed variable A0(Z) exp(g(X)) is exponen-
tially distributed with parameter 1, where A0(t) =

R t
0 �0(u)du. It follows that

A0(Z) is exponentially distributed with parameter exp(g(X)), which suggests
that g(x) can be estimated from data by methods for nonparametric expo-
nential regression. Kval�y and Lindqvist (2003) show how the covariate order
method in this way can be extended to estimation of g(x) in the generalized
Cox model (see their paper for details). Here we will concentrate on a similar
application to residual plots in the Cox model.

1.3.1 Model checking and model �tting in classical Cox regres-

sion

In the Cox proportional hazards model with �xed covariates we have �(tjx) =
�0(t) exp(�x), where � is a vector of regression coeÆcients. It follows from the
above that ri = A0(Ti) exp(�Xi), i = 1; : : : ; n, is a censored sample from the
exponential distribution with parameter 1. The Cox-Snell residuals (Cox and
Snell, 1968) r̂i are de�ned by substituting standard estimators Â0(�) and �̂ for
A0(�) and � in the expression for ri. These residuals are mainly used to assess
an overall �t by checking whether (r̂1; Æ1); : : : ; (r̂n; Æn) is compatible with a
(censored) sample from an exponential distribution. However, we shall see that
by the covariate order method we can obtain interesting residual plots which
are similar to the plots routinely used in ordinary linear regression models.
An advantage of our method is that censored observations are treated in a
consistent way.

For instance, for each single covariate Xk, say, we may �t an exponential
regression model to the data (r̂1; Æ1;X1k); : : : ; (r̂n; Æn;Xnk), where Xik is the kth
covariate for the ith observation unit. The covariate order method as described
in Section 1.2 gives an estimated hazard rate as a function of Xk which, if the
model is correct, is expected to be approximately constant at 1. Deviations from
a constant hazard rate indicate a possibly wrong model and can be investigated
visually from the plots, or tested more formally by for instance the Anderson-
Darling test described in Section 1.2.4.

A related application is to make plots of log hazard rates against covariates
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not included in the model. Such plots can reveal whether these covariates should
be included in the model, and in this case indicate the appropriate functional
form of the covariate. This is a simple and intuitive alternative to the plotting
of martingale residuals (Therneau, Grambsch and Fleming, 1990) commonly
used for this purpose. A somewhat related approach, but using nonparametric
Poisson regression instead of exponential regression, was used by Grambsch,
Therneau and Fleming (1995), see also Therneau and Grambsch (2000, chapter
5).

1.3.2 Example: PBC data

We illustrate the use of the covariate order method in the classical Cox model
by considering model �tting and model checking for the PBC data from the
Mayo Clinic. PBC (primary biliary cirrhosis) is a fatal chronic liver disease,
and out of the 418 patients followed in the study, 161 died before study closure.
A listing of the data can be found in Fleming and Harrington (1991). The �nal
model proposed by Fleming and Harrington (1991) includes the �ve covariates
age, edema, log(bilirubin), log(protime) and log(albumin).

For a demonstration of residual plotting we will look closer at the covariate
bilirubin. First we �tted a Cox model including the �ve covariates mentioned

p-value=2e-6
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Figure 1.4: Residual analysis of PBC data. Plot of the log of the estimated
hazard rate of the Cox-Snell residuals against bilirubin in a model using bilirubin
on its original scale (left) and the same plot against log(bilirubin) in a model
using log(bilirubin) (right).

above, but where the covariate bilirubin was included without making the log
transformation. The left plot in Figure 1.4 shows, for this model, the log of
the estimated hazard rate of the Cox-Snell residuals against bilirubin. The p-
value 2 � 10�6 reported in the plot was calculated using the Anderson-Darling
test described in Section 1.2.4. The low value certainly indicates a signi�cant
deviation from constancy, which is also clear from the plot. Thus the covariate
is not well modeled. The right plot shows the corresponding plot for a model
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where the bilirubin covariate is added as log(bilirubin). We see that the bilirubin
covariate now seems to be much better modeled.

As explained in the previous subsection, one may use similar plots to sug-
gest the functional form of covariates before they are entered into the model.
Figure 1.5 displays plots of the log of the estimated hazard rate of the Cox-
Snell residuals from an empty model versus, respectively, age, bilirubin and
log(bilirubin). Note that in this case the Cox-Snell residuals are simply Â0(Ti),
where Â0(�) is the Nelson-Aalen estimator of the cumulative hazard in the
empty model. The (approximate) straight line seen for the plot against age in

p-value=1.2e-6
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Figure 1.5: Functional form analysis in PBC data. Plots of the log of the
estimated hazard rate of the Cox-Snell residuals from an empty model versus
respectively age, bilirubin and log(bilirubin). The location of the observations
along the curves are displayed by the dots.

Figure 1.5 suggests that age can be added directly in the Cox model, while the
non-linear behavior of the plot against bilirubin suggests that a transformation
should be made for this covariate. The plot against log(bilirubin) indicates that
this covariate is much better modeled if it is transformed to log-scale.

1.4 Proofs

1.4.1 Proof of Theorem 1.2.1

In this proof and in the proof of Lemma 1.2.1, the Glivenko-Cantelli theorem,
and the Chebychev, Markov and Cauchy-Schwarz inequalities will be used re-
peatedly.

De�ne the process S�1 ; : : : ; S
�
n by S�j =

Pj
i=1

1
nTi. Let N

�
n(s) =

Pn
i=1 I(S

�
i �

s) be the counting process counting events in this process. Further, let Fn�
s =

�fX1; : : : ;Xng [ �f(Tj ; Æj) :
Pj

i=1 Ti=n � sg for s � 0. The intensity of the
process S1; : : : ; Sr conditional on the history Fn�

s is �n(sjFn�
s ) = n�(XN�

n(s)+1
).

Since Fn
s � Fn�

s it follows from the innovation theorem (Andersen et al. 1993,
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p. 80), that

�n(sjFn
s )=n = E[�(XN�

n(s)+1
)jFn

s ]: (1.6)

Assume that it can be proved that XN�

n(s)+1
p! �(s) uniformly. Then using

Markov's inequality we get

P ( j�n(sjFn
s )=n� �(�(s))j > 
) = P ( jE[�(XN�

n(s)+1
)� �(�(s))jFn

s ]j > 
)

� 1



E( jE[�(XN�

n(s)+1
)� �(�(s))jFn

s ]j ) �
1



E(E[ j�(XN�

n(s)+1
)� �(�(s))j jFn

s ])

� 1



E[ j�(XN�

n(s)+1
)� �(�(s))j ]:

It now easily follows by the boundedness of �(x) and the assumed uniform

convergence of XN�

n(s)+1
that j�n(sjFn

s )=n� �(�(s))j p! 0 uniformly in s.
It remains to prove that XN�

n(s)+1
really converges uniformly in probability

to �(s). Since T = min(Z;C), given the covariate X = x, we have that

fT (tjx) = fC(tjx) exp(��(x)t) + �(x) exp(��(x)t)(1� FC(tjx)): (1.7)

With the assumption 0 < a � �(x) �M <1 for all x, and the assumption that
the censoring distribution for all x has �nite �rst and second order moments,
it follows from (1.7) that there exist numbers Emin, Emax and Vmax such that

0 < Emin � E(T jx) � Emax <1; for all x;

0 < Var(T jx) � Vmax <1; for all x:
(1.8)

We proceed by �rst assuming that X is uniformly distributed on [0; 1]. Let a
point w on the s-axis be �xed in the following, and de�ne I, I0, I1 and �(w) by
the following relations

I : S�I�1 � w < SI�

I0 :
PI0�1

i=1
1
nE(T jXi) � w <

PI0
i=1

1
nE(T jXi)

I1 :
PI1�1

i=1
1
nE(T j i

n+1) � w <
PI1

i=1
1
nE(T j i

n+1)

�(w) :
R �(w)
0 E(T jv)dv = w: (1.9)

In particular I = N�
n(w) + 1. By the triangle inequality

jXI � �(w)j
� jXI � I

n+ 1
j+ j I

n+ 1
� I0
n+ 1

j+ j I0
n+ 1

� I1
n+ 1

j+ j I1
n+ 1

� �(w)j
= A1 +A2 +A3 +A4:

What remains is to prove that each of A1, A2 andA3
p! 0 andA4 ! 0 uniformly.
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(A1
p! 0): This follows by the Glivenko-Cantelli theorem which states that

if Fn is the empirical distribution function based on n i.i.d. observations from
F � FX , then supx jFn(x) � F (x)j a:s:! 0. Since F (x) = x; 0 � x � 1, we
have F (Xi) = Xi, while Fn(Xi) =

i
n . Thus, jXI � I

n j = jF (XI) � Fn(XI)j �
supx jF (x)� Fn(x)j a:s:! 0, which implies that A1

p! 0 uniformly.

(A2
p! 0): Let d � 2 be an integer. Then

P (I � I0 + djX1 = x1; : : : ;Xn = xn)

= P
�
S�I0+d�1 � wjx1; : : : ; xn

� � P

 
S�I0+d�1 �

I0X
i=1

1

n
E(T jxi)jx1; : : : ; xn

!

� P

0
@jS�I0+d�1 � I0+d�1X

i=1

1

n
E(T jxi)j �

I0+d�1X
i=I0+1

1

n
E(T jxi)jx1; : : : ; xn

1
A

Cheb:�
PI0+d�1

i=1
1
n2
Var(T jxi)�PI0+d�1

i=I0+1
1
nE(T jxi)

�2 � Vmax(I0 + d� 1)=n2

(d�1n Emin)2
� n

(d� 1)2
Vmax

E2
min

:

Since the upper bound on the conditional probability is not a function of
x1; : : : ; xn this implies that the inequality also holds for the unconditional prob-
ability P (I � I0+d). By choosing d = [n3=4] we get P (I � I0+[n3=4]) � cn�1=2

for a suitable constant c. A similar calculation gives P (I � I0�[n3=4]) � cn�1=2:
Hence

P (j I

n+ 1
� I0
n+ 1

j � [n3=4]

n+ 1
) � 1� 2cp

n
;

so j I
n+1 � I0

n+1 j
p! 0 uniformly in w.

(A3
p! 0): A key step in the following is the observation that since �0(x) �

D and fC(tjx) by assumption also has �nite �rst derivative, this implies that
there exist a B such that jE(T jx1)� E(T jx2)j � Bjx1 � x2j. Also recall that if
Xi is the ith order statistic of n independent identically uniformly distributed
variables on [0,1], then Var(Xi) =

i(n�i+1)
(n+1)2(n+2)

� 1
4(n+2) . Thus for an integer d,

P (I0 > I1 + d)

= P

 
I1+dX
i=1

1

n
E(T jXi) < w) � P (

I1+dX
1

1

n
E(T jXi) <

I1X
1

1

n
E(T j i

n+ 1
)

!

� P

0
@j I1+dX

1

(
1

n
E(T jXi)� 1

n
E(T j i

n+ 1
))j >

I1+dX
I1+1

1

n
E(T j i

n+ 1
)

1
A

Markov� EjPI1+d
1 ( 1nE(T jXi)� 1

nE(T j i
n+1 ))jPI1+d

I1+1
1
nE(T j i

n+1)
�

B
n

PI1+d
1 EjXi � i

n+1 j
d
nEmin
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C:�S:�
B
PI1+d

1

q
E(Xi � i

n+1)
2

dEmin
=

Bn

2dEmin

p
n+ 2

:

Proving the parallel inequality for P (I0 < I1 � d) and letting d = [n3=4] this
implies that

P

 
j I0
n+ 1

� I1
n+ 1

j � [n3=4]

n+ 1

!
� 1� cn�1=4

for a suitable constant c. Hence j I0
n+1 � I1

n+1 j
p! 0 uniformly.

(A4 ! 0): Observe that jPI1
i=1

1
nE(T j i

n+1) � wj � 1
nE(T j I1

n+1) � 1
nEmax

which implies that
PI1

i=1
1
nE(T j i

n+1 ) ! w =
R �(w)
0 E(T jv)dv uniformly. Note

that �(w) is uniquely de�ned since E(T jv) > 0 for all v, and it follows that
I1
n+1 ! �(w) uniformly.

This completes the proof that �n(wjF)=n p! �(�(w)) uniformly in w in the
case of uniformly distributed covariates on [0,1].

For covariates X1; : : : ;Xn drawn from a general continuous distribution
FX(�), let Ui = FX(Xi) be transformed covariates which are now indepen-
dent and identically uniformly distributed on [0,1]. Further let E?(T ju) =

E(T jF�1X (u)). Then (1.9) gives
R �?(w)
0 E?(T ju)du = w which by substituting

u = FX(x) and letting �(w) = F�1X (�?(w)) can be writtenZ �(w)

F�1

X
(0)

E(T jx)fX(x)dx = w: (1.10)

Replacing �(w) with x and w with s(x) we get

s(x) =

Z x

F�1

X
(0)

E(T jv)fX(v)dv =

Z
1

�1

I(v � x)E(T jv)fX(v)dv

= E(I(X � x)E(T jX)) = E(E(TI(X � x)jX)) = E(TI(X � x)):

1.4.2 Proof of Lemma 1.2.1

We can write

~s(x) =
1

n

nX
i=1

TiI(Xi � x):

Noting that s(x) = E(~s(x)) we have by Chebyshev's inequality, for each �xed
x and any � > 0,

P (j~s(x)� s(x)j > �) � Var(TI(X � x))

n�2
� E(T 2)

n�2
� E(Z2)

n�2
;

which tends to 0 as n ! 1 since E(Z2) < 1. In fact, we have E(Z2) =
E[E(Z2jX)] = E[2=�(X)2] � 2=a2. This proves the result.
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1.4.3 Proof of Theorem 1.2.2

Let Nn(s) and m be de�ned as before. It follows from counting process theory
(see for example Andersen et al., 1993), that Mn(s) = Nn(s) � Rn(s), where
Rn(s) =

R s
0 �n(ujFn

u )du, is a local square integrable martingale. The gen-
eral expression for �n(sjFn

s ) is given in (1.6). Introduce the notation �n(s) =
�n(sjFn

s )=n and Tn(s) = Rn(s)=n. The �rst part of the proof is to �nd an
estimator of �n(s) and to prove that this estimator is a uniformly consistent
estimator of �(s) = limn!1 �n(s) = �(�(s)).

The fact that Mn(s) is a martingale also implies that

Mn(s) =Mn(s)=n = Nn(s)=n� Tn(s) (1.11)

is a martingale. Following the same reasoning as in the derivation of the Nelson-
Aalen estimator in Andersen et al. (1993, chap. 4) it follows from (1.11) that a
natural estimator for Tn(s) is T̂n(s) =

R s
0 dNn(u)=n and then a kernel estimator

for �n(s) is

�̂n(s) =
1

hs

Z
1

0
K(

s� u

hs
)
dNn(u)

n
=

1

nhs

rX
i=1

K(
s� Si
hs

): (1.12)

By this an estimator of �n(s) is motivated, it only remains to prove its consis-
tency as an estimator of �(s). It follows from (1.11) that

�̂n(s) =
1

hs

Z
1

0
K(

s� u

hs
)dMn(u) +

1

hs

Z
1

0
K(

s� u

hs
)�n(u)du � dn(s) + ~�n(s):

By showing
j�̂n(s)� ~�n(s)j p! 0 (1.13)

uniformly and
j~�n(s)� �n(s)j p! 0 (1.14)

uniformly, uniform consistency of �̂n(s) follows from the triangle inequality since
uniform convergence of j�n(s)� �(s)j was proved in Theorem 1.2.1. For (1.13),
�rst notice that by results on stochastic integration and the fact that < Mn >
is de�ned as the compensator of Mn2 it follows (Andersen et al. 1993, chap. 4)
that

Ed2n(s) =
1

h2s

Z
1

0
K2(

s� u

hs
)Ed < Mn > (u) =

1

h2s

Z s+hs

s�hs

K2(
s� u

hs
)
1

n
E�n(u)du

=
1

nhs

Z 1

�1
K2(v)E�n(s� hsv)dv � M

nhn

Z 1

�1
K2(v)dv:

Then Markov's inequality gives

P (j�̂n(s)� ~�n(s)j > �) = P (jdn(s)j > �) � Edn(s)
2

�2
� M

�2nhn

Z 1

�1
K2(v)dv ! 0:



The Covariate Order Method 15

For (1.14) the convergence follows from

j~�n(s)� �n(s)j = j
Z 1

�1
K(v)(�n(s� hsv)� �n(s))dvj

�
Z 1

�1
jK(v)jj�n(s� hsv)� �n(s)jdv p! 0

uniformly because

j�n(s�hsv)��n(s)j � j�n(s�hsv)��(s�hsv)j+j�(s)��n(s)j+j�(s�hsv)��(s)j;
where the two �rst terms converge uniformly to zero in probability by The-
orem 1.2.1 and where the last term converges numerically uniformly to 0 by
uniform continuity of �(x).

This completes the proof that �̂n(s) given in (1.12) is a uniformly consistent
estimator of �(s). It now only remains to prove that replacing s by ~s(x) in
(1.12) yields a consistent estimator of �(x). By the triangle inequality

j�̂n(~s(x))� �(s(x))j � j�̂n(~s(x))� �(~s(x))j+ j�(~s(x)) � �(s(x))j;
where the second part converges uniformly to 0 in probability by Lemma 1.2.1
and the uniform continuity of �(s). This completes the proof that �̂(x) =
�̂n(~s(x)) is a uniformly consistent estimator of �(x).

1.5 Conclusions

We have presented a new method for nonparametric censored exponential re-
gression, and shown some of its applications. While we have given emphasis
to applications in Cox regression, one may think of similar applications in any
model with (approximately) exponentially distributed residuals, or in other
cases where data can be transformed to (approximate) exponentiality.

Notice the 
exibility of the covariate order method. Any density estimation
method should possibly be usable in the estimation of the scaled intensity,
and boundary problems can be handled by adapting various edge correction
techniques invented for density estimation. Moreover, di�erent smoothers can
be used to estimate the correspondence function. The covariate order method
turns out to be numerically very robust, and simulations (not reported here)
have shown that the performance in �nite samples is comparable to, and often
better than, standard local linear likelihood methods.
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