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1. Introduction and Summary

Nonhomogenous Poisson processes (NHPP) are widely used as models for events occuring in time,
for example failures of a repairable system. In practice it may be of interest to check the NHPP property
by statistical tests given failure data. The main purpose of this paper is to develop exact tests for null
hypotheses that failure times follow NHPPs of particular parametric forms.

One way of testing NHPP models is to embed the models in more general parametric failure models
and use likelihood ratio tests based on asymptotic chi-square distributions. A problem is here that
the observed number of failures is often too small to justify the use of asymptotic distributions. This
motivates the use of exact statistical inference whenever possible (Baker 1996, Gaudoin 1999).

In the present paper we consider exact (Monte Carlo) tests obtained by conditioning on a sufficient
statistic under the NHPP model of the null hypothesis. A new method for simulating conditionally on
sufficient statistics (Engen and Lillegdrd 1997, Lindqvist and Taraldsen 2000) will be used. A closely
related way of obtaining exact confidence intervals in parametric models (Lillegard and Engen 1999) is
also briefly considered.

2. Observations, Likelihood Functions and Sufficient Statistics

We assume that a repairable system is observed from time ¢ = 0 and until n failures have occurred.
This is known as failure truncation. Most of our results may be modified to the case of time truncation,
where the process is observed until a given time ty.

Suppose we model the failure process by an NHPP with intensity function A(t) and failure times
T = (T1,...,Ty). The log likelihood function resulting from observed failure times {¢;} is then given as
> i1 log A(t;) = fy" A(u)du (Crowder et al. 1991).

Two popular parametrizations of NHPPs are the power law, with intensity function given by ... (t) =
abt®~1 and the log linear law, with intensity function A,(t) = exp(a + bt). Substituting each of these
functions into the above log likelihood and using the factorization criterion for sufficiency, gives that

the statistic S = (log Ty, 27;11 log Tj) is sufficient in the power law case, while S = (Tn,zy;ll Tj) is
sufficient in the log linear case.

3. Conditional Testing Given a Sufficient Statistic

Let T be the vector of failure times as described in the previous section, and consider testing of the
null hypothesis Hy that these data come from an NHPP of a particular parametric type. Let W = W(T)
be any test statistic for revealing departure from the null model. Suppose that S = S(T) is a sufficient
statistic for the unknown parameters under the null hypothesis. Then if w.., is the observed value of
W we can obtain a conditional p-value by computing the conditional probability Pr,(W < w..|S = s).
For this we need to know the conditional distribution of W given S = s under Hy, which by sufficiency
is independent of the unknown parameters and thus in principle can be found. This may, however, be
difficult in many practical cases and we shall thus rely on simulations. Our tests will thus be Monte
Carlo tests.

4. Monte Carlo Conditioning on a Sufficient Statistic

In general, let the model for the observation T' (vector) under the null hypothesis be specified in
terms of a parameter (vector) 6. Suppose that for a given value of 8 we can simulate realizations of T
by T = x(U, ) for some function x and a random vector U with known distribution. Further, suppose
S(T) = S is sufficient for 6. Then S can be simulated by the function 7(U,8) = S(x(U, 9)).

Consider now computation of conditional expectations of the form E(¢(T)|S = s) for given functions
¢, where s is the observed value of S. By sufficiency, this conditional expectation is independent of §



and the clue of the approach is that it can be expressed in terms of ordinary expectations of functions
of U (Theorems 1 and 2 below). The basic idea comes from Engen and Lillegird (1997) who, however,
erroneously claimed that the conclusion of Theorem 2 will also hold under the more general assumptions
of Theorem 1.

Theorem 1 (Lindqvist and Taraldsen, 2000) Suppose § and S(T) take values in R* and suppose
the equation 7(u,0) = s has the unique solution 6 = (u, s) for each fized u,s. Let f(6) be a nonnegative
function defined on the parameter space, and let det Oy7(u, ) be the determinant of the matriz of partial
derivatives of T(u,8) for fized u. Then

Ey [¢(X(Ua é(Ua 3))) | ﬁ% |9:é(U,s)]

E((T)|S = 5) =

F(0
Ey [| det ag(rgu,o) |9=é(U,s)]

It is tacitly assumed above that f is such that the expectations exist and the denominator is positive,
but f may otherwise be arbitrarily chosen. The idea is that the expectations can be computed by
simulation by drawing an i.i.d. sample of U and averaging the expressions inside the expectations. It
follows that if a function f(-) can be chosen so that | f(8)/ det 97 (U, 0)|9:9~(U73) does not depend on U,

then we will have E(¢(T)|S = s) = Ey [¢(X(U,é(U, s)))] which means that the function x(U,8(U, s))

can be used to sample directly from the conditional distribution of T' given S = s. Unfortunately, it is
not always possible to find such an f, but the following sufficient condition can be given:

Theorem 2 (Lindqvist and Taraldsen, 2000) Let the situation be as in the previous theorem. As-
sume that there exist functions r and 7 with 7(u,0) = 7(r(u),0), such that the equation 7(v,0) = s has a
unique solution v = (8, s) for all (8,s). Then x(U,8(U,s)) is distributed as the conditional distribution
of T given S = s.

The new assumption of Theorem 2 means that 7(u, §) depends on « only through r(u), which usually
has a much lower dimension than u, and has the property that for given 8, r(u) is uniquely determined
by s. Note that ©(6, S) is a pivotal quantity in the classical meaning.

5. Conditional Simulation for Parametric NHPP Models

The first n events of an NHPP with intensity function A(-) can be simulated by letting U =
(U1,Us,...,U,) be the first n events of a homogeneous Poisson process with unit intensity, and then
letting

Ty = A~ U); j=1,...,n 1)

where A1 is the inverse function of the cumulative intensity function A(t) = fot Au)du.

5.1 Power Law Intensity
From Section 2 follows that 7} = (U;/a)'/*. With notation from the previous section we simulate 7' by

X(w;a,0) = (w1 /a)'"*,..., (un/a)'"")
while the sufficient statistic S = (log T, E;:ll log T}) is simulated by

n—1

7(u;a,b) = ((loguy, — loga)/b, (Z logu; — (n — 1) loga)/b)

Thus the pivotal condition in Theorem 2 holds with r(u) = (log un,Z;’;II logu;). Letting the ob-

served times be t = (t1,...,t,) and letting s = (t,, Z 11 t;), it is straightforward to obtain 6(u, s) =
(a(u, s), b(u, s)) by solving 7(u; a,b) = s for a and b.
Samples t = (ti,...,%,) from the conditional distribution of 7' given S = s can now be obtained by

first sampling u = (u1,...,u,) and then computing = x(u; é(u, s)). We get

= (ujfun) Pt 5 f=1,...,m



Note that # can be easily simulated by noting that the u;/u, are distributed as the order statistic of
n — 1 independent uniforms on [0, 1].

5.2 Log Linear Intensity
Now (1) becomes T; = log(1 + be *U;)/b, so T is simulated by

x(u;a,b) = (log(1 4+ be™%uy1)/b,...,log(1l + be™uy)/b)
and S = (T,,, Y72 T;) by

n—1

T(u; a,b) = (log(1 + be™ “uy)/b, Z log(1 + be™ “u;)/b)

Jj=1

It is clear that the pivotal condition of Theorem 2 is not satisfied here. This should be no surprise
since it is well known that the log linear NHPP model has no interesting pivotal statistic. In order
to compute p-values of conditional tests, we thus have to use Theorem 1 with some arbitrarily chosen
function f(a,b).

Now we can first find 8(u, s) = (@(u, s), b(u, s)) by solving for a, b the equations

1
tn, = b log(1 + be™%uy,) (2)
n—1 1 n—1
Z t; = 5 z log(1 + be™%u;) (3)
Jj=1 7j=1

Solving (2) for a and substituting into (3) gives

n—1 n—1
ws
bzltj = leog [1 + u_i(et"b - 1)] (4)
J= J=

which is an equation in b only. By differentiating twice it is seen that the right hand side of (4) is convex
in b. Further consideration leads to the conclusion that the equation (4) in addition to the trivial solution
b = 0 has a unique additional solution, which is the one that solves our problem, and which is easily
found by numerical methods. The solution for a is then finally found from (2).

Now & = x(u; a(u, s), b(u, 5)) is given by #; = log (1 + (etnblws) 1)(u]/un)) /b(u, s) and a straight-
b(

7
forward computation shows that the determinant detd, ;7 (u;a,b) with (a(w, s),b(u, s)) substituted for

(a,b) is given by

n—1 n—1
tn Y hj—hn > t; | [b(u,5)?
j=1 j=1

where h; = ((et"i’ — 1) (uj/un))/ (1 + (et"i’ — 1)(uj/uy)) and b = b(u,s). As for the power law case we
simulate the u;/uy, for j =1,...,n — 1 as the order statistic from a set of n — 1 i.i.d. uniforms on [0, 1].

6. Statistical Inference in NHPP Models

6.1 Goodness-of-Fit Testing

The identity (1) is equivalent to U; = A(T}). It follows that if A(-) is the cumulative intensity function
of the NHPP T, Ty, . .., then A(T}), A(T3),. .. is a homogeneous Poisson process with unit intensity. Thus
the transformed times V; = A(T})/A(T},) for j = 1,...,n — 1 are distributed as the order statistic of
n —1 i.i.d. uniform variables on [0, 1]. If A*(-) is an estimate of A(-) based on data ¢t = (t1,...,t), then
we shall define estimated transformed times v{,...,v;_; by v; = A*(t;)/A*(t»). One then anticipates
these to behave much similar to uniform variables, and goodness-of-fit testing may thus be based on
comparing the behaviour of the estimated transformed times to that of uniform variates.

Baker (1996) shows for the power law process that when A* is based on the maximum likelihood
estimates for the parameters, then the estimated transformed times are pivots, i.e. have distributions
which do not depend on the unknown parameters. This follows in fact from the representation ¢; =



(u;j/a)'’® in Section 5.1, noting that b* = —n/ Z;lz_ll log(t;/tn) is the maximum likelihood estimate of

n—1
b based on the data (Crowder et al. 1991). Then we have v} = (ti/tn)? = (u]-/un)_"/ 252 loa(us/un)
which is independent of the parameters.

Baker (1996) derives a class of score tests based on the estimated transformed times. A special
case, which we shall use for illustration, is W = 377, (v — vj_;)* where v§ = 0,05, = 1. The null
hypothesis of NHPP is rejected for either too small or too large values of this statistic. Note that since
the v} are pivots, we can in the power law case compute (by simulation) the unconditional probabilities
Pr, (W < wobs).

In the case of log linear intensity (Section 5.2) we get v} = (et —1) /(e t» —1) where the maximum
likelihood estimate b* is given as the solution to an equation given in Crowder et al. (1991). Conditional
p-values for the test based on W can then be computed by using Theorem 1 with ¢(T) = I(W < wey,)-

6.2 Exact Confidence Intervals .

Lillegard and Engen (1999) show how the b(u, s) of Section 5 can be used to obtain exact confidence
intervals for the parameter b, both for the power law and the log linear law cases: Draw a (large) number
of independent realizations w1, ..., um of U. Let s be the observed value of the sufficient statistic and let
5(1) < e < E(m) be the ordered values of the b(u;, s). Then (E(k),i)(m,kﬂ)) is an exact 1 — 2k/(m + 1)
confidence interval for b.

For the power law case it can be seen that the above interval (for m — o00) is the same as the classical
one based on the pivotal statistic 2nb/b*, which is known to be chi-square distributed with 2(n — 1)
degrees of freedom. The interval obtained for the log linear case, however, appears to be new.

6.3 Application to Data Set

We apply the above results to data from a reliability growth program, taken from Leitch (1995, p.
98). There are n = 10 failures, at times 103, 315, 801, 1183, 1345, 2957, 3909, 5702, 7261, 8245. Suppose
first that it is of interest to know if the data are consistent with a power law or a log linear NHPP.

In the power law case we get w,,. = 0.1263. Simulating the distribution of W we find Py, (W <
0.1263) = 0.024, which implies some evidence against the power law NHPP. In the log linear case we get
Wope = 0.1466, s = (8245,23576) and P, (W < w...|S = s) & 0.217, which would not lead to rejection
of the log linear NHPP assumption.

An exact 90% confidence interval for b in the power law model, using the chi-square distribtuion as
explained above, follows by first computing the maximum likelihood estimate b* = 0.6249. The resulting
interval is (0.2933,0.9020). Since the interval does not contain 1, we can conclude that we have reliability
growth. For the log linear case the maximum likelihood estimate is b* = —1.75-10~* and an exact 90%
confidence interval is (—5.60 - 10~%, —3.83 - 10~%), again indicating reliability growth.
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