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1 INTRODUCTION

REIDAR (REpalrable systems Data Analysis Routines) is an S-plus library of functions, i.e. a
collection of functions available after entering the library. S-plus itself is an environment for
statistical and graphical data analysis and programming. It is an enhanced version of the high
level language S and is distributed by Mathsoft, Inc. Especially in the statistics field S-plus have
become sort of standard tool, new methods are often accompanied with an publicly accessible
S-plus implementation.

The library REIDAR includes functions for parametric modelling, model checking, testing and
nonparametric/graphical techniques. Some of them are standard methods/models for repairable
systems, others are developed as part of research at the Department of Mathematical Sciences,
Norwegian University of Technology and Science, Trondheim. These are functions which are
not standard in S-plus, which hopefully will be useful when analysing repairable systems data.
The purpose of REIDAR is therefore to make these functions easily available. This report is a
manual and documentation of the contents of REIDAR, including some of the mathematical and
computational aspects.

1.1 Development of REIDAR

REIDAR was started as a student project for Ole Kristian Lundal (Lundal, 1994), supervised by
professor Bo Lindqvist and Georg Elvebakk. Originally the intension was to implement some of
the existing graphical analysing techniques for data from repairable systems. Later, REIDAR was
extended to include methods developed for parametric model estimation and model checking in
general heterogeneous trend-renewal processes (Elvebakk, Lindqvist & Heggland, 1999). REIDAR
also includes some tests for trend for repairable systems, several standard tests and also some new
tests developed by Kvalgy & Lindgvist (1998) and Elvebakk (1998). Several students have worked
on models that can now be seen as subsets of the REIDAR model class, in particular (Tveit, 1993),
(Heggland, 1994) and (Brandt, Korsaksel & Rosland, 1995).

REIDAR may thus be said to be an S-plus implementation of methods for analysing data from
repairable systems. But in addition to standard techniques it also includes several new models
and methods developed at the Department of Mathematical Sciences, NTNU, Trondheim.

The work on REIDAR was supported by “the Growth Point Centre in Safety and Reliability” at
NTNU/SINTEF with a grant in 1996.
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2 Documentation

2.1 Notation

Consider a repairable system, started at time 0, observed in the interval [a,b]. The successive
failure times are denoted Ty, T5,...,T,, where T} is the time of the first recorded failure. If T, = b
we say that the system is failure truncated, otherwise it is time truncated.

The interfailure times or times between failures are denoted X, X5, ... thus
X, =T;—T; 1, 1=1,2...

where it is defined that Ty = a.

Another way of representing the same information is by the number of failures at any given time,
thus:
N(t) = number of failures in (a, ]

Also define F;_, the history of the failure process up to, but not including, time ¢. For the models
considered in REIDAR F;_ can be thought of as generated by {N(s) : 0 < s < t}.

For datasets consisting of several repairable systems system number j is observed in [aj, b;] and

failure times recorded at Tj1,Tja,. .., Tjn,-



2.2 Data Input Functions

Functions for reading data from a file into a format used by the other functions in the REIDAR
library. The function rs.read.frame reads data from a file into a data frame. The function is.rsframe
checks whether an object is an rsframe.

rs.read.frame(file, time.scale)

Required arguments

file: the name of the file to be read.

Optional arguments

time.scale: the time unit used.

Output

A data frame object (called an rsframe, “repairable systems data frame”) with vectors:
start: a vector of times of observation start for each system.

stop: a vector of times of observation stop for each system.

number: a vector of number of failures for each system.

failures: a list of vectors containing the failure times for each system.

The data frame may have an attribute time.scale.

Purpose

This is a function for reading repairable systems data from file to the format used in REIDAR.

Details

The file to be read must be as follows: Each line contains data from one system in the following
order: number of failures (n), observation start (a), observation stop (b), failure times (7}).

The optional argument time.scale sets the “time” unit used in the observations.

It is of course possible to construct an rsframe without using this function. Other vectors may
also be added to this structure.
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rs.is.rsframe(x, warn=T)

Required arguments

x: an S-plus object.

Optional arguments

warn: if warn is TRUE warnings will be given.

Output
TRUE or FALSE, additional warnings may be given.

Purpose

This is a function for checking whether z is or is not an rsframe. May also return warnings.

Details

To check whether or not z is an rsframe, the function checks if z is a data frame with vectors
named start, stop, number and failures.

If the optional argument warn is TRUE, warnings will be returned.
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2.3 HTRP Models

The largest part of REIDAR is a collection of functions for analysing HTRP (heterogeneous time
renewal process) models. These include functions for simulating, (rs.htrp.sim), estimating model
parameters (rs.htrp.mle), model plotting (rs.htro.plot), estimating residual processes (rs.hirp.res)
and pp-plotting of residual data (rs.htrp.pp).

A HTRP model (Elvebakk et al., 1999) is a model for multi-system recurrence data, for example
failure data from a number of cars, where the age or mileage or operating time etc. is recorded for
every failure. For a dataset with only one system, a TRP (trend renewal process) model is used.
A TRP model is a generalization of a non-homogeneous Poisson process (NHPP) and a renewal
process (RP), having both as special cases. The following well-known property of an NHPP pro-
cess helps to illustrate how the TRP model is constructed:

If Ty, Ts,... is an NHPP with intensity function A(t), then the time-transformed process
A(Ty),A(T2),... is a homogeneous Poisson process (HPP) with expected time between failures
equal to 1.

The trend-renewal process (TRP) is defined simply by allowing the HPP of the NHPP definition
above to be any renewal process. So the intensity of a TRP process is specified by the NHPP
intensity function A(t) (from now on referred to as a trend function or transformation) and the
distribution of the interfailure times in the renewal process, F'(z). To avoid ambiguities in the
models F'(x) is restricted to be a distribution with expectation 1. The intensity given the history
up to time ¢ for a TRP process is then:

At Fe-) = 2(A(t) = A(Tn-)))A(#) (1)

where z(t) is the hazard rate corresponding to F'. Thus the intensity is a function of the time ¢
and the transformed time since last failure A(t) — A(Tn(;—)). For an NHPP model the hazard is
always 1, so the intensity given history becomes:

ACIF-) = At) (2)
For an RP model A(t) = A, giving:
At|Fem) = 2(t = Tve—y)A (3)

In case of several systems the HTRP model allows modelling of unobserved heterogeneity between
systems by modifying the trend function with a multiplicative factor; for system j:

Aj(t) = aA(t) (4)

where a; is an unobservable random variable that takes values independently across systems
according to a common probability distribution, H. For convenience H is assumed to have expec-
tation 1.

HTRP Model Notation

The notation HTRP(F, A(-), H) will be used for a HTRP model with distribution F' for the under-
lying renewal process, H for the heterogeneity distribution and a trend function described by A(+).
In practice also the sub-models of the HTRP model will be of interest. These include the HPP,
RP, NHPP and TRP, but also the heterogeneous versions of these models, which are denoted by
putting an H in front.

From the full model HTRP(F, A(+), H), there are seven sub-models:
HNHPP(A(\), H) = HTRP (exp, \(-), H)
HRP(F,\, H) = HTRP(F, \, H)



HRP HTRP
RP : TRP

Figure 1: The model cube.

HHPP(), H) = HTRP(exp, A, H)
TRP(F,A(-)) = HTRP(F, A(-),1)
NHPP(A(+)) = HTRP (exp, A(-), 1)
RP(F,\) = HTRP(F, \,1)
HPP()\) = HTRP(ezp, \, 1)

Here erxp means the exponential distribution with parameter 1, while 1 means the distribution
degenerate at 1. Note the difference between the function A(-) and the constant A.

The eight models are depicted in Figure 1, where each vertex represents a model, and the lines
connection them corresponds to changing one of the “coordinates” in the HTRP notation. Going
to the right here represents introducing a trend, going up introduces a non-Poisson model, and
going backwards (inwards) introduces heterogeneity in the model.

Computational Implementation

Functions for the HTRP(F, A(-), H) models include functions for simulating, likelihood optimiza-
tion, plotting, model checking, etc. Efforts have been made to write these in a general way,
meaning that all implemented options for the distribution of F' are exchangeable. The same is
true for A(-) and H. This also makes it easier to later add other functions or distributions to
REIDAR.



2.3.1 Simulating from an HTRP Model

For simulations from TRP models we take advantage of the fact that:
If S1,8s,... is an RP with interfailure times distributed according to F' (RP(F,1)), then the
time-transformed process A=1(S1), A=(S2),. .. is a trend renewal process (TRP(F, \(*))).

As always, F' is supposed to have expectation 1.

Implementation Details

The function rs.htrp.sim simulates from an HTRP model. Several options for trend function
(transformation) and renewal and heterogeneity distributions are implemented. (Listed later in
this section and in Section 2.3.6.) With the model and model parameters set the simulation
algorithm for the simulation goes as follows. We assume here a heterogeneous model with m

systems, failure truncated, with ni,ns,...,n,, number of failures respectively, all observed from
time 0.

1. Draw aq,as, ..., a,, from the heterogeneity distribution, H.

2. Forsystems j = 1,2,...,m draw X1, ..., Xj,, from the renewal distribution, F'. The arrival

times of the renewal process are the cumulative interarrival times:
i
Sii=>_ Xji
k=1

3. Transform the arrival times of the renewal process with the inverse of the trend function.
For systems 7 =1,2,...,m:

Tji = A7 (Sji) = A" (Sji/ay) (5)

For models without heterogeneity a; = 1,V;j. Time truncated models are simply simulated until
a given censoring time.

For (heterogeneous) TRP models it is always assumed that a renewal takes place at the time of
observation start.



rs.htrp.sim(model, par, end, start=0, sysnum=1, timetrunc=T)

Required arguments

model: a list specifying a model. The list should include component names renewal, transforma-
tion and heterogeneity. See the details section for further details.

par: a vector or list of model parameters.

end: a vector of endpoints (stopping times), or just a single point if only 1 system is simulated.
If timetrunc = F the value(s) of end is interpreted as number of failures. If sysnum > 1 and
length(end) = 1 all systems are assumed to have the same endpoint.

Optional arguments

start: a vector of observation starting points (starting times), or just a single point if only 1
system is simulated. If sysnum > 1 and length(start) = 1 all systems are assumed to have
the same starting point. Default is 0.

sysnum: number of systems to be simulated, default is 1.

timetrunc: if TRUE the function simulates until a given time, else until a given number of
failures. If sysnum > 1 and length(timetrunc) = 1 all systems are assumed to have the same
truncation type.

Output

A data frame object (called an rsframe, repairable systems data frame) with names: start, stop,
number and failures. The vector number is a vector of number of failures for each system. The
vector start is a vector of starting times (for observation) for each system. The vector stop is a
vector of stopping times (for observation) for each system. The list failures is a list of vectors
containing the failure times for each system. Other names and other attributes may be added
later to the frame.

Purpose

To simulate data from an HTRP model as specified in the arguments model and par, and return
the result as an rsframe.

Details

Heterogeneous trend renewal processes (HTRP) are a class of models including homogeneous
Poisson processes (HPP), non-homogeneous Poisson processes (NHPP), renewal processes (RP),
trend renewal process (TRP) and heterogeneous versions of these models. We build this class of
models by starting with a renewal process (includes the HPP). The arrival times of this process
can then be transformed by a trend function, the result is a so-called trend renewal process. (If
we started with an HPP with expectation 1 we would get an NHPP.) In case of multiple systems
(processes) heterogeneity may be added to the model. The trend function of each process is then
multiplied by a factor distributed according to a specified distribution. So these models can be
described in three parts: the renewal distribution, the transformation (trend) function, and the
heterogeneity distribution. To avoid ambiguities the distribution of the interarrival times of the
renewal process and the heterogeneity factor are restricted to have expectation 1.

RENEWAL: For the distribution of the interarrival times in the renewal process, F', the following
distributions are implemented:



exponential: 0-parameter exponential distribution with expectation 1.

EX)=1 Var(X)=1

Weibull: 1-parameter Weibull distribution with expectation 1.

lxl—le(—(l—‘(ﬁ+1)m)%)
f(a]g) = LEHNZ2E I v
I(26841)
BE(X)=1 Var(X) = @mzmq — 1

For 8 = 1 this is the exponential(1) distribution. For 8 > 1 the variance is greater than
exponential, smaller for § < 1.

gamma: l-parameter gamma distribution with expectation 1.

fal) =it s -
EX)=1 Var(X)=~

2B

For v = 1 this is the exponential(1) distribution.

bimodal-exponential: A 2-parameter distribution, the bimodal exponential distribution with
expectation 1.

f(1’|p, q) = paleialz + (1 _p)a2efoz2z, 0< p,q< 1
where a; = w and a2=p(g—1)+1 9)
E(X)=1 Var(X)=(p-p)a7’ +a;” = 2(maz)™")

Remark: A bimodal exponential RP is an RP were the times between arrivals with probability p
and (1 —p) are exponentially distributed with parameters c; and as respectively. The parameters
are restricted such that the expectation will always be 1. To do that a new parameter is introduced
q= g—f, where ay < ay.

TRANSFORMATION: The trend transformation function can either follow a homogeneous (con-
stant trend) model, a power law model, a log linear model, a mixed log linear power law model or a
linear model. They correspond to intensities for well-known NHPP models and have the following
trend functions:

homogeneous:
A(tla) = a a>0 (10)
power-law:
A(t|a,b) = abt®~? a,b >0 (11)
log-linear:
A(t|a,c) = ae‘ a>0 —oco<c< oo (12)
log-linear-power-law:
A(t|a,b,c) = abt®~ e a,b>0 —oco<c<o (13)
linear:
A(t|d,e) = (d+et) VO, —o0 < d,e < o0 (14)



Remark: For the log linear and log linear power law models ¢ < 0 may lead to infinite failure
times.

HETEROGENEITY: To add heterogeneity to the model the trend transformation functions for
each system is multiplied with a factor a;:

Aj(t) =a;A(t), j=1,...,sysnum (m)
where a; is distributed according to one of the following distributions:

Weibull: 1-parameter Weibull distribution with expectation 1.

11 5
F(alB) = (D(B+1))BaP ;6(—(F(ﬁ+1)a)ﬁ)’ 350 (15)
gamma: l-parameter gamma distribution with expectation 1.

1 1

flah) = s, 920 (16)

5

Remark: These distributions are the same gamma and Weibull distributions used for the renewal
process.

SPECIFYING A MODEL:
A list specifying the model must be given as input to the model argument. The list should include
the component names renewal, transformation and heterogeneity. An example:

> my.mod <- list(renewal="exponential” transformation="homogeneous” ,heterogeneity="no”)

This specifies homogeneous Poisson process (HPP())) model. Notice that another way do to this
would be to use an (unrestricted) 1-parameter exponential distribution for the renewal process
and no transformation. This is, however, an illegal model specification within this framework.

Another more general RP model is the gamma distributed renewal function, RP(gamma, \):
> my.mod <- list(renewal="gamma” transformation="homogeneous” ,heterogeneity="no”")

For an NHPP model choose a non-homogeneous transformation function, for example the power
law, NHPP (power law):

> my.mod <- list(renewal="exponential” transformation="power-law” ,heterogeneity="no")

A TRP model: the gamma distributed renewal function with a power law transformation function,
TRP(gamma, power law):

> my.mod <- list(renewal="gamma” ,transformation="power-law” ,heterogeneity="no")

For multi-system datasets heterogeneity may be added to any of the TRP models (or its sub-
models, NHPP, RP, HPP) by choosing for example a gamma distribution for the heterogeneity
factor, HTRP(gamma, power law, gamma):

> my.mod <- list(renewal="gamma” ,transformation="power-law” ,heterogeneity="gamma”)

The HPP model is of course a special case of both RP and NHPP models, RP and NHPP models
are special cases of TRP models, and non-heterogeneous models are special cases of heterogeneous
models. So the heterogeneous TRP (HTRP) model includes all the other models.

MODEL PARAMETERS:

Model parameters are chosen via the par argument. It should be either a vector with number of
elements corresponding to the number of parameters in that particular model, or a list like the
model argument. For example the TRP model:

> my.mod <- list(renewal="gamma” ,transformation="power-law” ,heterogeneity="no")

10



> my.parl <- ¢(1,2,0.75)

> my.par2 <- list(renewal=c(1),transformation=c(2,0.75),heterogeneity=NULL)

Both my.parl and my.par2 are valid input to the argument par. In the parameter vector the
renewal distribution parameters should come first, followed by the transformation parameters and
the heterogeneity parameters. Within a distribution or a trend function the parameters should
follow alphabetical order.

The names and number of parameters for the different distributions and transformation (trend)
functions:

Name Number of parameters
exponential: 0

gamma: 1 ()
Weibull: 1 (B)
bimodal-exponential: 2 (p,q)
homogeneous: 1 (a)
power-law: 2 (a,b)
log-linear: 2 a,c)
log-linear-power-law: 3 (a,b,c)
linear: 2 (a,d)

So to simulate data from a model with parameters as specified above:
> my.data <- rs.htrp.sim(model=my.mod,par=my.parl,end=c(10),sysnum=1,timetrunc=T)

This will be a one-system dataset, following a TRP(gamma, power law) model, observed from
time 0, time truncated at time 10.

WARNINGS:
For the log linear and log linear power law models ¢ < 0 may lead to infinite failure times.

For (heterogeneous) TRP models it is always assumed that a renewal takes place at the time of
observation start.
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2.3.2 Parameter Estimation in an HTRP Model

A general expression for the likelihood function of a (single) counting process observed in the
interval [0, 7] given observations 17,75, ...,T, is (Andersen, Borgan, Gill & Keiding, 1993):

- {ﬁx(mgfn_)} exp (— /0 A(ul]—'u_)du> (17)

i=1

For a TRP model (1) is substituted into (17), giving the likelihood:

{H ] T nwm} eon (= [+ = ATy )Awdn)  18)
If f is the intensity function corresponding to F' the likelihood can be written as:
{H fA T;- 1))>‘(Ti)} (1= F(A(r) = A(Tw)) (19)

This latter form of the likelihood function is used in the function rs.htrp.mle.

For m systems, we assume independence and models that are identical up to a heterogeneity factor
a;. The full likelihood becomes:

L = ﬁ L (20)

I {Hf a;(A (Tin))aJA(T)} (1 - Fla;(A(r) — A(T:,))))

j=1

Since a; is unobservable L; is now obtained as the expected value of L; with respect to a;. With
h being the density function corresponding to H the full likelihood is then:

H /LjdH(aj) (21)

11/ {H Fla (AT, - A(Ti_n))a»(m} (1= Fla;(A(T) = ATy, )ha;)da;

L

Implementation Details

The function rs.htrp.mle does maximum likelihood estimation in an HTRP model. The options
for trend function (NHPP intensity) and renewal and heterogeneity distributions are the same
as for rs.htrp.sim. The parametric optimization is done by maximising the log-likelihood, the
logarithm of (21). This is either done by the standard S-plus function nlminb, a quasi-Newton
optimizer, or by a REIDAR function amoebamin, a modification of a simplex routine from Press,
Teukolsky, Vetterling & Flannery (1992). When using these numerical optimizers we have of
course no guarantee that the real optimum is found, even when the procedure converges. Our
experience is that for those functions currently implemented in REIDAR there seems to be few
problems, but we cannot expect that to hold for every choice of functions and parameters.

The integral in (21) can be solved analytically for some choices of F'; A and H, but generally, it
cannot. So in REIDAR the likelihood function (21) is always computed by numerical integration
for heterogeneous models. The numerical integration is based on the the following form of the
integral:

[ Lj(a;)dH (a;) J 9(a;)da;
= f@wp{Z y log(f (a;
+>2 109(( i) +1

+log(h ( i) }da;

(A(T3) = A(T; 1)) + ny log(a;)
0g(1 = Fa;(A(r) — A(Tn,)))) (22)
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The integrand g is a function of a;, F, A and H. These functions, or rather log(f), log()), log(h)
and log(1 — F) are arguments to g. As the implementation of many of these function are them-
selves based on numerical methods the optimization procedure may be very time consuming for
some choices of models. The functions currently implemented in REIDAR are listed in Section
2.3.6.

The default numerical routine used is the standard S-plus function integrate which uses an adap-
tive 15-point Gauss-Kronod quadrature. In our experience this function was faster than a simple
Simpson’s routine for comparable accuracy. In some cases, typically when the numerical inte-
gration routine returns 0 or oo, the integration routine is aided by some simple measures. The
algorithm goes as follows:

1. Find the value of a;, d; that maximizes g(a;) by minimising —log(g(a;)) with nlminb.

2. Find the constant C such that 4%) =1 = ¢ = log(g(d;))

e

3. Find the interval where g(e‘éf) = exp{log(g(d;)) — C} > 0.

4. Numerically integrate < ffg) = exp{log(g(d;)) — C} by the function integrate with lower and

upper integration limits.

5. log([ g(a;)da;) is then approximated by the numerically evaluated
log([ (g(e‘é?)) daj) + C

For (heterogeneous) TRP models it is always assumed that a renewal takes place at the time of
observation start.
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rs.htrp.mle(model, data, start, lower, upper, print=0, amoeba=F,
amoeba.tol=1e-10, amoeba.iter=1000, intern.scale=F, ...)

Required arguments

model: a list specifying a model. The list should include component names renewal, transforma-
tion and heterogeneity. See under details in Section 2.3.1 for further details.

data: counting process data on the form specified by the function rs.read.frame.

Optional arguments:
start: a vector of starting values for the parameters, if not supplied defaults will be set.

lower: a vector of lower bounds for the parameters. If this is not supplied default lower parameter
bounds for each model is used.

upper: a vector of upper bounds for the parameters. If this is not supplied default upper param-
eter bounds for each model is used.

print: if FALSE (default) no intermediate results will be displayed. If TRUE parameter and
function values will be printed for each function evaluation.

amoeba: if FALSE (default) nlminb is used for optimization. If TRUE a simplex optimizer is
used.

amoeba.tol: absolute function convergence tolerance when amoeba is TRUE, default is 1e-10.
amoeba.iter: maximum number of iterations when amoeba is TRUE, default is 1000.
intern.scale: a simple scaling sometimes useful to obtain convergence. The default is FALSE.

: additional arguments for nlminb (includes arguments to niminb.control).

Output: A list with the following components:
model: same as the input model.

parameters: mle for the parameters.

loglik: the log likelihood of the model.

start: starting values for the model parameters.
lower: lower bounds for the parameters.
upper: upper bounds for the parameters.

intern.scale: if the argument intern.scale is TRUE, the start vector. Else a vector of 1s, length
is number of parameters.

data: input data.

nlmin: a list of results from the optimization with components message, grad.norm, iterations
and f.evals. For further information use help(nlminb).

amoeba: a list of results from the optimization with components message, iterations, f.evals and
tol.

call: the function call.

14



Purpose

To estimate parameters of a HTRP model of the data in data. The model is specified by the
argument model. The result is returned as a list.

Details

For details on the choice and specification of models, see Section 2.3.1.

START PARAMETERS:

The function tries to choose reasonable start parameters, but these can also be supplied via the
start argument. It should be either a vector with number of elements corresponding to the number
of parameters in that particular model, or a list like the model argument. An example for a TRP
model:

> my.mod <- list(renewal="gamma” ,transformation="power-law” ,heterogeneity="gamma”)
> my.startl <- ¢(1,2,0.75)

> data.mle <- rs.htrp.mle(model=my.mod,start=my.start1,data=data)

> my.start2 <- list(renewal=c(1),transformation=c(2,0.75),heterogeneity=NULL)

> data.mle <- rs.htrp.mle(model=my.mod,start=my.start2,data=data)

Both my.startl and my.start2 are valid input to the argument start. In the vector, the renewal
distribution parameters should come first, followed by the transformation parameters and the
heterogeneity parameters. Within a distribution or a trend function the parameters should follow
alphabetical order. The arguments lower and upper should be specified in the same manner.

The names and number of parameters for the different distributions and transformation functions:

Name Number of parameters
exponential: 0

gamma: 1 (7)
Weibull: 1 (B)
bimodal-exponential: 2 (p,q)

homogeneous: 1 (a)
power-law: 2 (a,b)
log-linear: 2 (a,c)
log-linear-power-law: 3 (a,b,c)
linear: 2 (a,d)

AVOIDING ERRORS:
If something goes wrong in the optimization here are some tips:

Try different start values. Parameter estimates from sub-models will often be a good starting
point.

Restrict the parameters with the lower and upper arguments to keep the parameters away from
the area where the errors occurred. It is also possible to keep a parameter constant using
the lower and upper arguments.

Transform the input data, i.e. divide or multiply them with a constant. This means observ-
ing them on another time scale. About one event per system per time unit can often be
recommended.

When the parameters vary a lot in size it may be advantageous to use the option intern.scale =T

Try simplex optimization (amoeba) instead of nlminb.
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WARNINGS:

Multiple events in the same system are not allowed. (Remedy: add or subtract a small value, or
delete one event)

For (H)TRP models it is assumed that a renewal takes place at the time of observation start.

For large datasets (in particular those with many systems) some of the heterogeneous models
will converge very slowly and use a lot of memory capacity. This is due to the use of
numerical integration routines within the functions. This is especially true for models where
the log linear power law transformation are used, which will often converge slowly even for
non-heterogeneous models.

If you try to use a heterogeneous model for datasets that do not exhibit any heterogeneity, the
parameters in the gamma and Weibull heterogeneity distributions will converge to 0. This
may lead to problems for the optimization procedure, which should be monitored closely.

kokokokok skokok kokok kokkok ok kok kok
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2.3.3 Plot of a fitted HTRP Model
Generally,the intensity of a HTRP model is given by:

At Fn(—)) = 2(a; (A(E) = Altn(-))))a;AlD) (23)

Here A is the trend function (NHPP intensity), z is the hazard function of F', the distribution of
the interfailure times of the underlying renewal process, and a; is the unobservable heterogeneity
factor for system j.

The cumulative intensity is just the integral of the intensity:

t

At Fxe) = / A () Py (24)

a

For heterogeneous models the trend function for system j is given by
Aj(t) = a;\(t) (25)

where the a;s are unobservable. To get estimates of the heterogeneity factors for individual systems
we may use a Bayes estimator (Follmann & Goldberg, 1988), i.e. the expectation in the aposteriori
distribution of a;. The apriori distributions of a; is h(a;) and the likelihood function of the TRP
model (where a; is the only unknown parameter) is L;(a;) (21). We thus get the aposteriori
distribution:

(a;|Tj1, Tj2, - - -, Tjny;) o< h(aj)Lj(ay) (26)

Implementation Details
The form of the intensity function (23) implemented in REIDAR is

Nj(tlFni—y) = exp{log(f(a;(A®t) — Altni—)))))
—log(1 — F(aj(A(t) = Altn—))))) — log(a) —log(A(t)) }

where the functions log(f), log(1 — F'), A, A, the heterogeneity factor a;, the fitted parameters
and the dataset are arguments to the intensity function. The functions currently implemented in
REIDAR are listed in Section 2.3.6.

For the cumulative intensity (24) a simple Simpson’s integration routine is used to compute the
integral.

The expectation of the aposteriori distribution (26) is found by numerically integrating

Jo~ aih(a;)Lj(aj)da
Jo" hlag)Lj(aj)da
As in the case of likelihood optimization (Section 2.3.2) the S-plus function integrate is employed

for the integration. Also the integrals are re-written on the same form as in (22), and a similar
algorithm is used to aid the integration routine.

(27)
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rs.htrp.plot(model.fit, cam=T, splitplot=F, renew=T, hetero=T,
add=F, resolution=100, show=T, intervals=1000,...)

Required arguments:

model.fit: output from rs.model.mle. (Only data, parameters and fitted model are needed.)

Optional arguments:

cum: if TRUE (default) the cumulative intensity function will be computed. If FALSE the in-
tensity function will be computed.

splitplot: if FALSE (default) the intensities of different systems are plotted in the same plot. If
TRUE individual intensity functions are plotted in individual plots.

renew: if TRUE (default) time since last failure is used to compute the intensity functions. If
FALSE, the model is treated as if it was a (heterogeneous) NHPP model. (Only the trend
function is plotted, the plot will be easier to read.)

hetero: if TRUE (default) the function tries to compute heterogeneity factors for the individual
systems (only for heterogeneous models). If FALSE the model is treated as if it was a TRP
model. (All heterogeneity factors are 1.)

add: if TRUE the computed function (or functions) is plotted in an already existing plot. If
FALSE a new plot will be created.

resolution: the number of points for which the function is computed (and plotted). More points
give a smoother plot, default is 100.

show: if TRUE (default) the intensity function will be plotted. If FALSE the function returns
a list of vectors of times and the intensity function computed at these times, one for each
system.

intervals: number of intervals used in a numerical Simpson’s integration for the cumulative in-
tensity function. More points gives a better estimate, default is 1000.

: additional arguments to function plot.

Output
If show is FALSE a list with components:

x: a vector of times for which the (cumulative) intensity is computed.
y: the (cumulative) intensity computed at x.

If there are several systems a vector is computed for each system.

Purpose

To compute (and plot) the (cumulative) intensity of models fitted by the function rs.htrp.mle. The
estimated model can then for instance be compared to the Nelson-Aalen estimator. To extend the
usefulness of this function we have added the possibility to suppress certain aspects of the model,
like heterogeneity and renewal.
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Details
Computes and plots the (cumulative) intensity of a model specified in model.fit (including data).

Because the value of the heterogeneity factor a; is given only in terms of a distribution, a Bayes
estimate for this factor is computed for each system if hetero is TRUE.

If hetero is FALSE the models will be plotted as were they TRPs (HTRP(F, A(+), 1)), i.e. with the
multiplicative heterogeneity factor a; equal to 1 for all systems.

If renewis FALSE all the models will be plotted as were they (heterogeneous) NHPP (HTRP (exp, A(-), H)),
i.e. without regard to the history of the individual systems.

Output is either a plot or a list of times with corresponding computed intensities. See rs.htrp.mle
or rs.htrp.sim for more details concerning HTRP models.

kokokokok skokok kokok kokkok ok kokkok
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2.3.4 Computing the Residual Process of a Fitted HTRP Model

The function rs.htrp.res computes the so-called residual process of a fitted model. This means
transforming the observed failure times with the estimated cumulative intensity of the fitted model.

From the definition of a TRP process we have that if T, T, ... are generated by a TRP(F, A(+))
model then
AT) - AT;-1) i=1,2,... (28)

are i.i.d random variables distributed according to F. (For an NHPP F is exponential(1).) We
also have that that if T, T», ... are generated by a TRP(F, A(-)) model then

AT\ Fr,—) = ATia|Fr,_—), 1=1,2,... (29)

are i.i.d random variables from an exponential(1) distribution. This follows from general theory
of point processes and is also seen directly from:

T;
AT Fr )~ AT |Fr, ) = / A(t|F)dt

T 1

= /Ti 2(A(t) — A(Ti—1))A(t)dt

T 1
A(T;)—A(Ti;-1)
- / “(y)dy (30)
0

which is exponential with parameter 1 since A(T;) — A(T;-1) has distribution F' and z(-) is the
corresponding hazard rate.

So either the E-residual process A(T}|Fr,_) or the F-residual process A(T}) can be used to check for
deviations from the model assumptions, and in fact they are equivalent. The so-called residuals
are now the interarrival times of the residual processes. Typical things to check for would be
the distribution of the residuals, (deterministic) trend, serial correlation or heterogeneity in the
residual processes.

For heterogeneous processes the same approach is used as for the plotting function. The unobserved
multiplicative heterogeneity factors, a;, are estimated by the aposteriori expectation. Another
possibility would be to let all systems have the same factor a; = 1. Assuming the model was
correct, the E-residual processes from different systems would then follow homogeneous Poisson
processes (HPPs) with differing intensity parameter, HPP(a;).

Implementation Details See Section 2.3.3.
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rs.htrp.res(model.fit, renew=T, hetero=T, ...)

Required arguments

model.fit: output from function rs.htrp.mle. (Only data, parameters and fitted model are
needed.)

Optional arguments

renew: if FALSE the residuals from a (heterogeneous) TRP model are computed as were they
from a (heterogeneous) NHPP model.

hetero: if FALSE the residuals from a heterogeneous model are computed as were they from a
model without heterogeneity.

: additional arguments to function plot.

Output:

An rsframe containing the residual process. The number of events will be the same as in the
original systems.

Purpose

To compute the so called residual process of a model fitted by the function rs.hirp.mle as specified
in model.fit. This process can then be examined to check if the model fits the data. To extend the
usefulness of this function we have added the possibility to suppress certain aspects of the model,
like heterogeneity and renewal.

Details

The function returns an rsframe containing the residual process(es) (i.e. transformed failure times).
This residual dataset could then be examined by functions like rs.tbf, rs.ttt, rs.kaplan.meier,
rs.nelson.aalen, rs.intens.hist, rs.test.trend, rs.test.exp and others for deviations from the model
assumptions. It could also be modelled by a HTRP model.

If the model is correct the residual process should be a realization of an HPP(exp,1), i.e. the
times between arrivals should be exponentially distributed with expectation 1.

If the TRP model is correct and renew = F' the residual process will be a realization of an RP(F, 1),
i.e. the times between arrivals should be distributed according to F', the distribution of the inter-
arrival times of the underlying renewal process.

If the chosen heterogeneous model is correct and hetero = F' the residual processes will be realiza-
tions of HPP(a;) with intensities differing by a multiplicative factor distributed according to the
specified heterogeneity distribution.

The computation is done using the function rs.htrp.plot, see this for computational details.
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2.3.5 Checking the Distribution of the Residuals of a Fitted HTRP Model

The residuals, i.e. the interfailure times of a residual process, are i.i.d random variables if the
fitted model is correct. The E-residuals (29) are exponentially distributed with expectation 1, the
F-residuals (28) are distributed according to the F', the distribution of the interarrival times of
the underlying renewal process.

The function rs.htrp.pp plots
(PO, e () (31)

where F is the (estimated) distribution of the residuals if the model is correct and Fgyp is an
empirical distribution function. X is here the vector of (uncensored) ordered residuals of the
model.

Implementation Details

The options for the distribution of F' are the same as the options for the distribution of the renewal
process of the function rs.htrp.mle (see Section 2.3.2).

There are two empirical estimator of the distribution function implemented, the Kaplan-Meier
estimator and the Nelson estimator (Section 2.4.5), both can handle censored data. For uncensored
data the Kaplan-Meier estimator is just the usual empirical distribution function.

rs.htrp.pp(x, dist="exponential”, par=c(1), emp="kaplan-meier”,
line=T, show=T, add=F, ...)

Required arguments

x either an rsframe (as specified in rs.read.frame) or a data vector which may have a names at-
tribute indicating a censored observation (see rs.tbf). Data from an rsframe will be converted
into times between failures.

Optional arguments

dist: the distribution of the residuals (usually) according to the fitted HTRP model. The imple-
mented distributions are exponential (default), gamma, weibull and bimodal-exzponential.

par: the parameter(s) of the fitted distribution.
emp: type of empirical distribution function estimator, kaplan-meier (default) or nelson.
line: if TRUE a straight line between (0,0) and (1,1) will be drawn in the plot.

show: if TRUE (default) the probability-probability plot is plotted. If FALSE the result is re-
turned as a list of two vectors.

add: if TRUE the p-p plot is plotted in an already existing plot.

: additional arguments to function plot.

Output:
If show is FALSE a list with components:

x: the estimated cumulative distribution (from the fitted model) at at the interarrival times.
y: the empirically estimated cumulative distribution at the interarrival times.

If show is TRUE a plot is created on the current graphics device.
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Purpose

To plot the (parametrically) estimated (cumulative) distribution of the interarrival times of a
residual process versus an empirical estimate of the distribution at the same interarrival times.
The result may be used to check the model fit of an HTRP model fitted by rs.htrp.mle by check-
ing whether the interfailure times of the residual process of the fitted model have the correct
distribution.

Details

If the residuals are computed with the argument renew = T in function rs.hitrp.res and the
model is correct the residuals should be exponentially distributed with expectation 1. Other-
wise (renew = F') the residuals should follow the distribution of the underlying renewal process of
the fitted HTRP model.

The implemented distributions are the same as the the renewal process distributions fitted in
rs.htrp.mle: exponential with expectation 1 (default), l-parameter gamma with expectation 1,
1-parameter Weibull with expectation 1 and 2-parameter bimodal-exponential with expectation 1.
Arguments to this function are the name of the distribution and (for non-exponential distribu-
tions) the estimated parameter(s) from output of rs.htrp.mle.

For the empirical distribution function there are two options: the Kaplan-Meier estimator or the
Nelson estimator.

The function returns a plot, if the values are close to the diagonal the fit is good.
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2.3.6 Miscellaneous Functions

Mostly functions that are arguments to other functions, typically functions associated with a dis-
tribution or trend function. For example functions that simulate from or compute the probability
density of a Weibull distribution.

The Exponential Distribution with Expectation 1

flz) = e*
EX) =1 Var(X) =1

lfexpol(x, par)

Computes the log of the probability density of the distribution:

log(f(x)) = —x

IRexpol(x, par)

Computes the log of the survival function of the distribution:
log(l — F(z)) = —=x

rexpol(n, par)

Samples n observations from the distribution:

(—log(1-1))

where U is uniform(0, 1) distributed.
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A Weibull Distribution with Expectation 1

3 A1 (—(P(+1)2)F)
flajpy = LEFDFeR fTHENT g

B
BX) = 1 xmm:%q

lfweibulll(x, par)
Computes the log of the probability density of the distribution:

z@uuwnzﬁﬁ%iQA«%—l

Ylog(z) — (T(B + 1)) % — log(B)

IRweibulll(x, par)

Computes the log of the survival function of the distribution:

wl=

log(1 = F(z|B)) = =(T(8 + 1)x)

gweibulll (u, par)

Computes a quantile of the distribution:

(=log(1 —u))”

awl) = Gy

rweibulll(n, par)

Samples n observations from the distribution by computing:

(=log(1-U))"
L(B+1)

where U is uniform(0,1) distributed.

25



A Gamma Distribution with Expectation 1

1 1 z

")/’Y[L"Y e "

flzly) = T 7>0
EX) =1 Var(X) =+

lfgammal(x, par)

Computes the log of the probability density of the distribution:

log(f(z])) = ‘ZTM +C = Diogle) - £ - Log(D(2)

IRgamma(x, par)

Computes the log of the survival function of the distribution. This is a function of the incom-
plete gamma function, computed by log(1 — pgamma(%, %)), or a continued fraction development
(Abramowitz & Stegun, 1972) for added accuracy for certain parameter values.

[ v e~ vdy
tog(1 = Flal) = tog |
5

gweibulll (u, par)

Computes the u-quantile of the distribution by solving for x:

fo% vy e~y
A —
I'(2)

2=

rgammal(n, par)

Samples n observations from the distribution by solving

B fo% 07 evdy
L)

1
5

F(z|y)-U -U=0

for . Where U is uni form(0,1) distributed.
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A Bimodal-Exponential Distribution with Expectation 1

f(zlp,q) = pare” " + (1 —plage” *",  0<p,g<1
-1 1
where a; = pi(q )+ and ax=p(¢g—1)+1
q

E(X)=1 Var(X)=(@-p)(a;” +a;” = 2(amaz)7")

Ifbimodexpol(x, par)

Computes the log of the probability intensity of the distribution.

log(f(z|p,q)) = log(pare” 1" + (1 — p)ase” *27)

IRbimodexpol(x, par)

Computes the log of the survival function of the distribution.
log(1 — F(z|p,q)) = log(pe™*"* + (1 — p)e™**%)

rbimodexpol(n, par)

Samples n observations from the distribution by solving
F(zlp,q) —U=1—pe " —(1—ple**-U=0

for x, where U is uniform(0, 1) distributed.
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The Homogeneous Trend (Transformation) Function
AMtla) =a, a>0

lhomtrend(t, par)

Computes the logarithm of the intensity.

log(A(t]a)) = log(a)

Homtrend(t1, t2, par)

Computes the difference in cumulative intensity at two points:

A(t2|a) — A(t1]a) = / : AMu)du = a(ty — ty)

ty

Homtrend.inv(s, par)

Computes the inverse of the cumulative intensity at s.

_1 _ S
A7 (s|a) = .

The Power Law Trend (Transformation) Function
A(tla,b) = abt®™',  a,b>0

lpowlaw (t, par)

Computes the logarithm of the intensity.
log(A(tla,b)) = log(a) + log(b) + (b — 1)log(t)

Powlaw(t1, t2, par)

Computes the difference in cumulative intensity at two points:
A(ts|a,b) — A(ti]a,b) = a(th —t3)

Powlaw.inv (s, par)

Computes the inverse of the cumulative intensity at s.

S

AY(sla,b) = (—)%

a
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The Log Linear Trend (Transformation) Function
Atla,e) = ae, a>0, —00<c< o0

lloglin(t, par)
Computes the logarithm of the intensity.

log(A(tla, c)) = log(a) + ct

Loglin(t1, t2, par)

Computes the difference in cumulative intensity at two points:
a
Altsla,e) — Al fa, ) = L(et> — ett)
c

Loglin.inv(s, par)

Computes the inverse of the cumulative intensity at s.

log (% + 1)

AT =
(slac) -

The Log Linear Power Law Trend (Transformation) Function
A(tla,b,c) = abt*tet, a,b>0, —co<c< o0

llogpow (t, par)

Computes the logarithm of the intensity.
log(A(t|a,b,c)) = log(a) + log(b) + (b — 1)log(t) + ct

Logpow(t1, t2, par)

Computes the difference in cumulative intensity at two points:
ta
A(ta]a,b,¢) — A(t1|a, b, c) = / abt® et dt
t1

Can be solved with incomplete gamma functions for ¢ < 0 (see IRgamma above), numerical
integration and/or Taylor series for ¢ > 0.

Logpow.inv (s, par)

Computes the inverse of the cumulative intensity at s by solving
A(tla,b,c) —s =0

for t¢.
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The Linear Trend (Transformation) Function
A(tld,e) = (d+et) V0, —oo<de<oo

llinear(t, par)
Computes the logarithm of the intensity.

log(A\(t|d, e)) = log(d + et)

Linear(t1, t2, par)

Computes the difference in cumulative intensity at two points:
A(ta|d,e) — A(ti]d,e) = d(t> — t1) + e(t3 — t7)

Linear.inv(s, par)

Computes the inverse of the cumulative intensity at s.

— /d? 2
A’l(s|a,b) — W
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A Simpson’s Numerical Integration Function

integrate.simp(f, lower, upper, n=100, ...)

Required arguments

f: the integrand.

Optional arguments

lower: lower integration limit, default is —oo.
upper: upper integration limit, default is oco.
n: the number of intervals is 2n.

: additional arguments to f.

Output

a list with the item integral containing the numerical approximation.

Purpose

To compute an approximation of the integral of f(z,...), from lower to upper.

Details

Uses Simpson’s method with 2n intervals. Additional arguments to f can be supplied via ....

Kk ok >k ok ok ok ok kokook kokokoksk kkkk
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A Simplex Optimizer Function

amoebamin(start, funk, ftol=1e-10, upper, lower, max.iter=1000, ...

)

Required arguments

start: a vector of starting values for the parameters.
funk: the function to be minimized

lower: a vector of lower bounds for the parameters.

upper: a vector of upper bounds for the parameters.

Optional arguments
ftol: absolute function convergence tolerance.
max.iter: maximum number of iterations.

: additional arguments to funk.

Output

A list with the following components:

parameters: final parameter values of the optimization.
loglik: the final value of funk.

lower: lower bounds for the parameters.

upper: upper bounds for the parameters.

nfunk: the number of function calls.

message: a statement of the reason for termination.

Purpose

To minimize a function in n dimensions.

Details

A simplex-type function minimizer in n dimensions. This function is a slightly modified S-plus
translation of the function amoeba in Press et al. (1992). Given a vector of starting values (start)
and lower and upper limits a minimum is found for the function funk. If the given limits are not
+00 a simple internal transformation takes place. A start simplex is made by adding or subtrac-
tion 5% around the start point. Arguments can be transferred to funk via ...

amoebamin returns the result of the optimization, the number of iterations etc.
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2.4 Graphical and Non-Parametric Functions

Includes non-parametric estimates of intensity and cumulative intensity in an NHPP model, the
total time on trend transform for systems and i.i.d. data, the Kaplan-Meier and Nelson estimators
for survival probability and some functions for detecting serial dependency in repairable systems
data.

2.4.1 The Nelson-Aalen Estimator for Cumulative Intensity

The Nelson-Aalen estimator (Nelson, 1969),(Aalen, 1978) of cumulative intensity of a (multiple)
counting process following a multiplicative intensity model (see Andersen et al. (1993)):

A=Y % L (32)

it Y (L)

where Y (Tj;) is the number of processes (systems) operating immediately before time T;. At) =0
for ¢ S HliIljJ T]z

rs.nelson.aalen(data, splitplot=F, show=T, add=F, ...)

Required arguments

data: counting process data on the form specified by the function rs.read.frame.

Optional arguments

splitplot: if TRUE the function computes and plots the estimator for each system in individual
plots.

show: if TRUE (default) the estimator will be plotted. If FALSE a list giving failure times and
number of systems alive will be returned.

add: if TRUE the estimator is plotted in an already existing plot.

: additional arguments to plot.

Output
If show is FALSE a list with components:

failtimes: failure times.

numsys: number of systems alive at time of the failure.
cumintens: estimated cumulative intensity at time of the failure.
obsstart: time of observation start.

obsstop: time of observation stop.

If splitplot is TRUE these are lists of vectors, one for each system.
If show is TRUE the estimator is plotted.
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Purpose

To give a non-parametric estimate of the cumulative intensity by the Nelson-Aalen estimator. The
result may for example be compared to parametric models estimated by function rs.htrp.mle.

Details

Computes and plots the Nelson-Aalen estimator of cumulative intensity for counting process data
on the form specified by the function rs.read.frame

If splitplot is TRUE the function computes and plots the estimator for each system in individual
plots. If add is TRUE it will be plotted in an already existing plot. If show is FALSE it will not
be plotted.

Output is a list or a plot of the estimated cumulative intensity function.

To get estimators for several individual systems in the same plot compute the estimator for one
system at the time and use add =T'.
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2.4.2 A Histogram-Like Intensity Estimator

rs.intens.hist(data, nclass, breaks, splitplot=F, show=T, ...)

Required arguments

data: counting process data on the form specified by the function rs.read.frame.

Optional arguments

nclass: the number of classes in the histogram. The default is a number proportional to the
logarithm of the number of failures in data.

breaks: vector of break points for the bars of the histogram.
splitplot: if TRUE the function computes (and plots) an intensity estimate for each system.
show: if TRUE the intensity histogram will be plotted.

: additional arguments to hist

Output

If show is TRUE a vector containing the coordinate of the centre of each box is returned. if show
is FALSE the function returns a list with components:

intensity: intensity in each class of the intensity histogram.

breaks: break points between intensity histogram classes.

If splitplot is TRUE intensity and breaks will be list of vectors, one for each system.

Purpose

Computes and plots a histogram-like intensity estimate for counting process data on the form
specified by the function rs.read.frame.

Details

The function is based on the S-plus function hist. It computes a simple histogram-like intensity
estimate by counting the number of events within each class and divide it by the length of the
class. Several (parallel) systems will give a better estimate. There is no smoothing. See Lundal
(1994) for details.

The number of classes (i.e. bars) in the histogram is given by nclass . breaks is a vector of break
points. If splitplot is TRUE an individual estimate will be computed (and plotted) for each system.
If show is FALSE a plot will not be created.

Output is a list or a plot of the estimated intensity function. The result may be compared to
parametric models estimated by function rs.htrp.mle.
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2.4.3 Functions for Detecting Serial Dependence

A graphical function for plotting X; against X;_; and a function that computes an estimate of
the autocorrelation coefficient.

rs.lagplot(data, lag=1, ...)

Required arguments

data: counting process data on the form specified by the function rs.read.frame.

Optional arguments
lag: the lag k at which to plot X; against X; . Default is 1.

: additional arguments to plot.

Output
A lagplot is created on the graphics device.

Purpose

To check for dependencies between interfailure times at lag 1, 2 etc. Can for example be used to
examine the residual processes as part of a model checking procedure.

Details

Plots X; against X4, for k = lag for data given by data. For multi-system data (Xj;, X i+x), J =
1,...,m are plotted in the same plot.
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rs.acf(data, lag=2)

Required arguments

data: counting process data on the form specified by the function rs.read.frame.

Optional arguments

lag: the maximum lag, at which the autocorrelation coefficient is computed.

Output:

A list with the following components:
acf: vector of the autocorrelation coefficient computed at lags 1,. .., lag.
stdev: vector of the estimated standard deviation for the computed coefficients.

sysnum: vector of the number of systems used at the specified lags.

Purpose

To check for serial correlation between interfailure times at lags 1,2, .... Can for example be used
to examine the residual processes in a model checking procedure.

Details

Computes autocorrelation coefficient at lag k for k = 1,...,lag. Returns a list of autocorrelation
coefficients and estimated standard deviation.

In case of multiple systems (processes) the autocorrelation coefficient is computed for each system
and then added together. As the number of failures in the systems may differ we often cannot use
all systems for a specified lag. Therefore the number of systems used in computing the coefficients
are returned. The estimate of standard deviation is adjusted for this. The following expression is
used to compute the autocorrelation coefficient for one system at lag k:

AL E?:]k(Xm —Y)(Xi —Y)
E:ZZI()(i__j(T)2

(33)

—

p(k) is unbiased but may be greater than +1. If there is no autocorrelation it is asymptotically
normally distributed with expectation 0 and asymptotic variance %

For several systems the mean of the individual coefficients is returned. The number of systems
may vary if the number of failures in each system are not the same.

For reference see Lundal (1994).
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2.4.4 The Total Time on Test Transform for Systems

The TTT plot for repairable systems data was introduced by Barlow & Davis (1977) for the NHPP
model. It is based on the total time on test transform, which is the total time, all systems added
together, have been under observation until time t.

Assume that m independent NHPPs with common intensity function A(¢) are under observation.
The observation intervals (a;,b;] are contained in the interval (0,S]. Let N = 37" n; and let
the arrival times of the superimposed process be S1,Ss,...Sy If we let p(u) denote the number
of systems under observation at time u, the total time on test from 0 to £ is:

() = / p(u)du (34)

The scaled total time on test statistic is the total time on test at time ¢ relative to the total time
on test for the whole observation period:

(35)

T(S) Jy plu)du

T fy plu)du
S

The (scaled) TTT plot is the plot of the scaled total time on test statistic at the time of the k’th
failure of the superposed process versus scaled failure number:

<T(5k) k >
T)'N)
If all systems are observed for the same time period this TTT plot is just a scaled Nelson-Aalen
plot with the axes interchanged.

If there is ”"no trend” (HPP) in the data the TTT plot will be located near the main diagonal.
Different, shapes of the TTT plot may give indications of different types of trend.

—1,...,N (36)
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rs.ttt(data, splitplot=T, show=T, add=F, line=T, ...)

Required arguments

data: counting process data on the form specified by the function rs.read.frame.

Optional arguments
splitplot: if TRUE the function computes and plots an estimator for each system individually.

show: if TRUE (default) the estimator will be plotted. If FALSE a list giving the scaled TTT
statistic and the scaled failure number at the times of failure will be returned. (Can be used
to draw the TTT plot.)

add: if TRUE the TTT plot will be plotted in an already existing plot.
line: if TRUE a straight line between (0,0) and (1,1) will be drawn in the plot.

: additional arguments to plot.

Output
If show is FALSE, a list with components:

x: (failure number)/(total number of failures).
y: the scaled TTT statistic.

If splitplot is TRUE z and y are lists of vectors, one for each system. If show is TRUE a plot is
created on the current graphics device.

Purpose

To create the (scaled) TTT plot for repairable systems. The plot may be used to check for trends
in the failure times. Also used for TTT trend tests in Section 2.5.1.

Details
Computes (and plots) the (scaled) TTT plot for repairable systems.

If splitplot is TRUE a plot is created for each system. If add is TRUE it will be plotted in an
already existing plot. If show is FALSE output is a list that can be plotted.
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2.4.5 Functions for Analysis of Interfailure Times

The function rs.tbf converts repairable systems data in the form of an rsframe into a vector of
interfailure times. The function rs.ttt.tbf computes the (standard) total time on test plot for in-
dependent and identically distributed possibly censored data. The functions rs.kaplan.meier and
rs.nelson compute the Kaplan-Meier and Nelson estimators of survival probability for i.i.d. data.

The TTT estimator for i.i.d data can be seen as a special case of the TTT estimator for systems
data (34-36) where each “system” is observed only until the first failure. For exponential distri-
bution the plot will be located near the diagonal. A concave plot indicates an increasing failure
rate while a convex plot indicates a decreasing failure rate.

The Kaplan-Meier estimator, R /() is a non-parametric estimator of survival probability at

time . The result is a right continuous function where R (0) = 1. It is defined (Kaplan &

Meier, 1958) as

(nk — 1)
g

RKM(.T) = H (37)

kEK,

where K, is the set of all indices k¥ where X(;) < @, X(;) represents an uncensored interarrival
time and ny, is the number of units under observation immediately before time X(;). If a censored
interarrival time is the largest this will not be a proper distribution.

The Nelson estimator, RN(Q:) is another non-parametric estimator of survival probability at time
x. The result is again a right continuous function where Ry (0) = 1. It is defined (Nelson, 1969)

as
Rn(z) = e:np{— Z i} . (38)

n
kEK, k

This will not be a proper distribution as it will never be 0.
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rs.tbf(data, addcen=F)

Required arguments

data: a data frame for counting process data as specified in rs.read.frame. May contain data from
several systems. The systems can be time truncated (censored last interfailure time).

Optional arguments

addcen: if TRUE censored observations are added to the next uncensored observation. If FALSE
(default) a names attribute is added indicating if an observation is censored (T) or not (F).

Output

A vector of times between failures. If addcen is FALSE, with a names attribute indicating whether
it was censored or not.

Purpose

To compute a vector of interfailure times (times between failures) for repairable systems data in
rsframe format.

Details
The single output vector contains interfailure times from all systems in data.

If addcen is TRUE censored observations are added to the next uncensored. (Or the first if the last
observation is censored.) If the interfailure observations in data are independent and identically
exponentially distributed the resulting dataset will have the same properties.

If addcen is FALSE the output vector will have a names attribute which indicates if an observation
is censored (T) or not (F).
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rs.ttt.tbf(x, add=F, show=T, line=T,...)

Required arguments

x: either counting process data on the form specified by the function rs.read.frame or a data vector
which may have a names attribute indicating a censored observation (see rs.tbf). Data from
an rsframe will be converted into times between failures.

Optional arguments

show: if TRUE (default) the estimator will be plotted. If FALSE a list giving the scaled TTT
statistic and the scaled failure number at the times of failure will be returned. (Can be used
to draw the TTT plot.)

add: if TRUE the TTT plot will be plotted in an already existing plot.
line: if TRUE a straight line between (0,0) and (1,1) will be drawn in the plot.

: additional arguments to plot.

Output
If show is FALSE, a list with components:

x: (failure number)/(total number of failures).
y: the scaled TTT statistic.

If show is TRUE a plot is created on the current graphics device.

Purpose

To create the (scaled) TTT plot for possibly censored i.i.d data. The plot may be used to check
the distribution of interfailure times, especially for a residual process (Section 2.3.4). Also used
for tests for exponential distribution in Section 2.5.2.

Details
Computes (and plots) the (scaled) TTT plot.

If add is TRUE it will be plotted in an already existing plot. If show is FALSE output is a list
that can be plotted.
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rs.kaplan.meier(x, add=F, show=T, ...)

Required arguments

x: either counting process data on the form specified by the function rs.read.frame or a data vector
which may have a names attribute indicating a censored observation (see rs.tbf). Data from
an rsframe will be converted into times between failures.

Optional arguments

show: if TRUE (default) the Kaplan-Meier estimator will be plotted. If FALSE a list from which
the estimator can be plotted is returned.

add: if TRUE the Kaplan-Meier estimator will be plotted in an already existing plot.

: additional arguments to plot.

Output
If show is FALSE a list with the following components:

x: the sorted uncensored interfailure times.
y: the value of the estimator at z.

If show is TRUE a plot is created on the current graphics device.

Purpose

To compute the Kaplan-Meier estimator of survival probability for possibly censored data. In a
repairable systems situation it may be employed to examine the distribution of the interfailure
times, especially the so-called residuals, the interfailure times of a residual process. (Section 2.3.4.)

Details

Computes and plots the Kaplan-Meier estimator of survival probability. Input data is either an
rsframe or a vector which may have a names attribute indicating a censored observation (see
rs.thy).

If show is TRUE the estimator will be plotted. If add is TRUE it will be plotted in an already
existing plot. Output is a list or a plot of the Kaplan-Meier estimator.
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rs.nelson(x, add=F, show=T, ...)

Required arguments

x: either counting process data on the form specified by the function rs.read.frame or a data vector
which may have a names attribute indicating a censored observation (see rs.tbf). Data from
an rsframe will be converted into times between failures.

Optional arguments

show: if TRUE (default) the Nelson estimator will be plotted. If FALSE a list from which the
estimator can be plotted is returned.

add: if TRUE the Nelson estimator will be plotted in an already existing plot.

: additional arguments to plot.

Output
If show is FALSE a list with the following components:

x: the sorted uncensored interfailure times.
y: the value of the estimator at z.

If show is TRUE a plot is created on the current graphics device.

Purpose

To compute the Nelson estimator of survival probability for possibly censored data. In a repairable
systems situation it may be employed to examine the distribution of the interfailure times, espe-
cially the so-called residuals, the interfailure times of a residual process. (Section 2.3.4.)

Details

Computes and plots the Nelson estimator of survival probability. Input data is either an rsframe
or a vector which may have a names attribute indicating a censored observation (see rs.tbf).

If show is TRUE the estimator will be plotted. If add is TRUE it will be plotted in an already
existing plot. Output is a list or a plot of the Nelson estimator.
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2.5 Tests
2.5.1 Trend Tests

The function rs.test.trend tests for trend in a dataset by several different tests. We say that there
is a trend if the interfailure times of a repairable system tends to get either shorter or longer
(monotonic trends), or they may follow any other non-stationary model (non-monotonic trends).
A system has no trend if the marginal distributions of all interarrival times are identical. In the
HTRP case a trend would mean a non-homogeneous trend function, ().

Trend tests can be categorized by their null and alternative hypotheses. Ascher & Feingold (1984)
consider three different null hypotheses: a) homogeneous Poisson process (HPP), b) renewal pro-
cess (RP) and c) general stationary sequence (GSS). The possible alternative hypotheses are split
into two: I) Monotonic trend (MT), and II) Non-monotonic trend (NT). Many of the standard
tests in the reliability field are tests for HPP against MT. A possible problem with these tests is
a lack of robustness versus other stationary processes like renewal processes (Lindqvist, Kjonstad
& Meland, 1994).

Tests for Trend in One System

Most tests for trend in repairable systems are based on the Poisson process assumption. Three
such tests have been implemented in REIDAR, the Laplace test, the Anderson-Darling test and
the so-called military handbook test. Most of the tests are defined for one system observed either
until n failures, or until time b is reached. To get an efficient notation, we define n as

A= n if the process is time truncated
“ | n—1 ifthe process is failure truncated

where for time truncated processes n = N (b).

The Laplace Test

The null hypothesis of this test is HPP and the alternative is a NHPP with monotonic intensity
function. It is well known (Bain, Engelhardt & Wright, 1985), (Cox & Lewis, 1966) that this test
is an optimal test if the alternative hypothesis is an NHPP of the log-linear type. The test statistic
is .

> Ti — 50(b +a)

L/\

5n(b—a)?

L=

(39)

It is approximately standard normally distributed under the null hypothesis, this approximation
is said to be very good (Ascher & Feingold, 1984) if n > 3. The null hypothesis is rejected for
small or large values of L. If L > 0 (L < 0) it is an indication of an increasing (decreasing) trend.

The Military Handbook Test

The null hypothesis of this test is HPP and the alternative is an NHPP with monotonic trend.
This test is an optimal test if the alternative hypothesis is a NHPP of the power-law type with
increasing intensity (Bain et al., 1985). The test statistic is

" b—a
MH_QZ;ln (Ti_a> (40)

It is Xg(n_l)—distributed under the null hypothesis (MIL-HDBK-189, Reliability Growth Manag-

ment, 1981). The null hypothesis is rejected for small or large values of Z. Large (small) M H is
an indication of increasing (decreasing) trend.
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The Anderson-Darling Test

This is a test studied in Kvalgy & Lindqvist (1998). The null hypothesis of this test is HPP and
the alternative is a trend, possibly non-monotonic or any other deviation from a homogeneous
Poisson process. The test statistic is

AD = —% li(% ~1)(ln (1;_ ;)
+1In(1 - %))} — i (41)

For the distribution of AD see Kvalgy & Lindqvist (1998). If AD is large the null hypothesis is
rejected, a visual inspection of the TTT transform can give an indication of the type of trend.

For the last two tests the null hypothesis is a renewal process (RP):

The Lewis-Robinson Test

The null hypothesis of this test is RP and the alternative is a monotonic trend. It is a modification
of the Laplace test proposed by Lewis & Robinson (1974) where L is divided by the estimated

—

coefficient of variation of the interarrival times, CV (X). The test statistic is thus

LR=—~ . (42)

T o)

Under the RP assumption LR will be asymptotically standard normally distributed.

The Mann Test

This is a rank test developed by Mann (1945). The null hypothesis of this test is RP and the
alternative is a monotonic trend, more exactly a sequence of independent random variables with
monotonically increasing or decreasing expectation. The test statistic is computed by counting
the number of reverse arrangements, M, among the interarrival times, X1, Xs,...X,,. A reverse
arrangement exists if X; < X, for i < k:

n—1 n
M=) Y I(Xi<Xy) (43)
i=1 k=i+1

M is approximately normally distributed for n > 10, there exists tables for n < 10. In REIDAR the
p-values are always computed under the assumption of normality, to get more accurate estimates
for small samples permutation methods may be employed.

Tests for Trend in Several Systems

In the case of several systems case there are at least two ways of generalising the Poisson tests. One
possibility is to combine test statistics for each individual system into a combined trend test for
the whole dataset. Note that for Poisson assumption tests we are then testing the null hypothesis
of possibly different HPPs, i.e. each system may follow its own homogeneous Poisson process. In
accordance with Kvalgy & Lindqvist (1998) these tests are called combined tests.

The other method consists of testing with the original single system tests for trend, but where the
the original dataset are replaced by the TTT transformation . Unless all observation periods are
equal, this corresponds to a null hypothesis of a common HPP for all the original systems. Again
following Kvalgy & Lindqvist (1998) these tests are called TTT tests. Because the null hypothesis
for TTT tests is more restrictive than for the combined tests, TTT tests are generally stronger.
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Resampled Tests for Trend

For standard Poisson assumption tests for trend the rejection of Hy does not necessarily indicate
a trend, just that it is not an HPP. An RP or any other GSS may cause rejection, even if a trend
is not present. This is especially true for the Anderson-Darling test which is constructed to detect
deviations from the homogeneous Poisson process. In this situation tests like the Lewis-Robinson
test and the non-parametric Mann test (where the null hypothesis is RP) can be used.

Another approach is to robustify the Poisson tests by resampling them under a more general null
hypothesis (Elvebakk (1998) or Elvebakk (1999)). There are two resampling methods implemented
in REIDAR, both dealing with the RP null hypothesis situation:

Permutation

This method can be used only for failure truncated systems. Resampling is performed by per-
muting the interfailure times of an observed system. For each new sample the test statistic is
computed, and we thus get a distribution under the extended Hy from which a p-value can be
computed by standard Monte Carlo methods.

Bootstrap

For failure truncated systems this method is only a slight adjustment of the permutation method.
A bootstrapped sample (with replacements) is used instead of a permuted sample. For time
truncated systems resampling is performed by sampling from the empirical distribution of the
interfailure times until the time of observation stop for the original data. Unless the resampled
system contains the same number of failures as the original systems it is rejected. The Kaplan-
Meier estimator is used as an empirical distribution.

Note that in case of several systems there is a difference in the resampling procedure for combined
and TTT tests. For TTT tests interfailure times from all systems are pooled to construct our
empirical distribution. For combined tests each system is resampled individually.
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rs.test.trend(data, type="all”, aggr=F, resample="no”, resnum=1000)

Required Arguments

data: counting process data on the form specified by the function rs.read.frame.

type: vector indicating which tests should be used. If ”laplace” is an element of type the function
returns the p-value for the Laplace test, likewise for "military-handbook”, ”mann”, ”lewis-
robinson” and ”anderson-darling”. If type="all” (default) p-values for all implemented test
are returned.

aggr: if aggr = F (default) a test statistic is computed for each system which are then combined
and a combined p-value is computed. If aggr = T the ttt-transformation of the dataset is
used as the testing object.

resample: if resample = "no” standard no-resampling tests are performed. If resample = "per-
mutation” a resampling test is performed based on permuted versions of the original dataset.
If resample = ”bootstrap” a resampling test is performed based on bootstrapped versions of
the original dataset.

resnum : the number of resampling replications, default is 1000.

Output

A data frame with test statistics (+ degrees of freedom in case of chi-square distribution), p-values
against trend and p-values against increasing trend (where possible) for the specified tests with
the input dataset.

Purpose

To test a given dataset for trends in the interfailure times using one or more of the implemented
trend tests. For datasets with several systems two different methods of generalising these tests are
implemented. The test can be robustified against renewal processes by resampling.

Details
The function performs a trend test by any of the methods in the type argument.

If aggris FALSE combined tests are used. Test statistics are computed for each system individually
and then combined. Under Hy each system must then follow a (possibly different) HPP. If aggr
is TRUE TTT tests are used. The test statistics are then computed for the TTT transformation
(rs.tit) of the original dataset. Under Hy each system must follow a common HPP.

If resample is “no” (default) no resampling is performed. If resample is “permutation” the func-
tion uses a permutation method to compute p-values for the tests. For the Poisson tests Hy is
then extended to RP. If resample is “bootstrap” the function uses a bootstrap method to compute
p-values for the tests. For the Poisson tests Hy is again extended to RP. Resampling tests may be
slow, especially for larger datasets.

The argument resnum is the number of resampling replications executed to construct the distri-
bution of the test statistic under Hy.
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2.5.2 Tests for Non-Exponential Distribution

These tests are just special cases of the TTT tests for trend in a Poisson process of Section 2.5.1.
For exponentially distributed i.i.d data, the arrival times of the standard TTT transformation
(Section 2.4.5) will be distributed according to a uniform distribution. Therefore the standard
tests for trend in Poisson processes may be used to test for deviations from exponential distribution
of possibly censored i.i.d data.

The main intension of theses tests is to test the assumption of exponentially distributed interarrival
times of the residual processes of Section 2.3.4.

rs.test.exp(data, type="all”, combine=F)

Required Arguments

x: either counting process data on the form specified by the function rs.read.frame or a data vector
which may have a names attribute indicating a censored observation (see rs.tbf). Data from
an rsframe will be converted into times between failures.

type: vector indicating which tests should be used. If ”laplace” is an element of ¢ype the function
returns the p-value for the Laplace test, likewise for ”military-handbook” and ”anderson-
darling”. If type="all” (default) p-values for all the test are returned.

combine: if FALSE (default) interfailure times from all processes are used to compute the TTT-
transformation (see details). If TRUE a ttt-transform and test statistic are computed for
each individual system separately. The test statistics are then combined to give a combined
test statistic for the whole dataset. combine can only be used for data on the form specified
by the function rs.read.frame’

Output

A data frame with test statistics, p-values against non-exponential distribution and p-values
against increasing failure rate (where possible) for the specified tests with the input dataset.

Purpose

To test a given dataset for deviations from exponential distribution. The dataset may be either a
vector of observations (with a names attribute to indicate censoring) or an rsframe. In the latter
case the interarrival times are tested.

Details

These are originally tests for trend, here used as tests for deviations from exponential distribution.
See the function rs.test.trend for details on the test statistics. The null hypothesis is an exponential
distribution. The Laplace and military handbook tests are tests against monotonically increasing
or decreasing failure rate, the Anderson-Darling test will detect more general deviations from an
exponential distribution.

The testing procedure consists of computing the (standard) ttt-transformation for the dataset.
If the null hypothesis is true this can be regarded as a realization from a homogeneous Poisson
process, and tests for trend in Poisson processes are therefore used to test for deviations from an
exponential distribution.

If combine is TRUE and z is a multi system rsframe, TTT transformation and testing are done
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for each system separately. The test statistics are then combined into an overall test statistic for
the whole dataset. The null hypothesis is then that the interfailure times from different systems
are distributed according to exponential distributions with possibly differing parameters (hetero-
geneity between systems). In the case of no heterogeneity between systems this is a weaker test
than the test above.
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