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Engen & Lillegard (1997) presented a most interesting approach for doing Monte Carlo simulations
conditioned on a sufficient statistic. It turns out that one of their main claims is incorrect due to
the ignorance of a Borel paradox when conditioning on a zero set. Lindqvist & Taraldsen (2004)
present ways to mend the problem and suggest how the modified claims can be proven. Measure
theoretic proofs of these claims are given here. The modified claims are also presented in the form
of three simulation algorithms. The formulas obtained are similar in form to the ones presented
by Trotter & Tukey (1956) who introduced the term conditional Monte Carlo, but the methods
are otherwise rather different.
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1 Introduction

The concept of suficiency is due to Fisher (1920) according to Savage (1976, p.453), Rao (1992,
p-42), and Lehmann & Casella (1998, p.143). It is a part of the foundations of statistics through the
sufficiency principle, and it is practically important with applications for example in construction
of optimal estimators and nuisance parameter climination (Halmos & Savage 1949, Welsh 1996,
E.L.Lehmann 1997, Lehmann & Casella 1998). The required conditioning may however be difficult
to implement in practical problems. The traditional conditional Monte Carlo method of Trotter &
Tukey (1956) is one possible approach, but this is also sometimes difficult to implement. Section 2
below presents alternative related approaches in the form of algorithms. In contrast to the article
by Trotter & Tukey (1956) the proofs behind these algorithms rely on the assumed sufficiency.
The above background is first explained in some more detail.

1.1 Rao-Blackwellization

Of the many possible definitions of sufficiency the following is convenient in the context here: A
statistic T is sufficient for a parameter € compared to a statistic X if for all ¢ there exist a 1 such
that F%(¢(X)|T = t) = (t). Definition 2 in Section 4 gives a precise definition. The crucial
point is that the conditional expectation is not a function of the parameter 8. This definition of
sufficiency is closely related to the definition given by Blackwell (1953, p.266) and is more general
than the conventional since it is not assumed that T is a function of X.

An important consequence of this definition is that the conditional expectation of an estimator
with respect to a sufficient statistic is again an estimator. It is actually a better or equally good
estimator: The bias is unchanged, and the variance is less than or equal to the original variance.
More generally, since Jensen’s inequality holds for conditional expectations, the expectation of any
convex loss function is decrcased by the conditional expectation. This improved estimator is the
Rao-Blackwellization of the original estimator, and the original proofs generalize to the setting
here (Rao 1945, Blackwell 1947, Lehmann & Casella 1998).
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Lehmann & Scheffe (1950) introduced the notion of completeness. A statistic T is complete
for a parameter 6 if E?{y(T)} = 0 for all 6 implies P%(¢p # 0) = 0 for all §. Completeness
implies that the Rao-Blackwellization of an unbiased estimator is the unique best estimator in
the class of unbiased estimators From this it is not surprising that a complete sufficient statistic
is automatically minimal in the sense that the generated o-field is contained in the o-field of
any other sufficient statistic (Lehmann & Casella 1998, p.42). There exist different definitions of
completeness, for instance given by consideration of different classes of functions 1 (Mattner 1993),
and the concept is also important for non-parametric statistics (Bell, Blackwell & Breiman 1960).

The problem of existence of an unbiased estimator for a given estimand is treated nicely
by Halmos (1946), and more recent references are given by Lehmann & Casella (1998, p.111).
Unbiased estimation is however, even if possible, not always a reasonable approach as demonstrated
by simple examples (Rao 1973, p.333). The main point, however, remains true quite generally:
Given any rcasonablce estimator, such as empirical mean X, variance S2, or distribution F,,, or
some slightly biased estimator, the estimator may be improved by conditioning on a sufficient
statistic, and the methods presented here give alternative routes for the actual calculation.

1.2 Nuisance parameter elimination

Conditioning on a sufficient statistic for a nuisance parameter is a convenient and natural method
for the elimination of the nuisance (Fraser 1956, Basu 1977, Reid 1995). Tn good cases, typically if
the suflicient statistic is complete and a component of a complete suflicient statistic for the model
under consideration, the resulting inference is optimal if the method of inference for the conditional
modecl is optimal (E.L.Lehmann 1997, p.147). There are also cases where optimal inference is too
much to hope for, such as in goodness-of-fit tests with a large class of alternative distributions. As
a concrete example in Section 5 it is explained how exact p-values in a Kolmogorov-Smirnov type
test for the gamma distribution can be obtained by conditioning on a sufficient statistic. The idea
is simply to replace the more traditional estimate of the distribution under the null hypothesis via
estimation of the parameters by the optimal unbiased estimate of the distribution at a finite number
of points. The distribution of the corresponding unconditional test statistic may depend on the
parameters, but exact p-values can be obtained from consideration of a corresponding conditional
test. A related Kolmogorov-Smirnov type test is described by Kumar & Pathak (1977), but the
above observation regarding exact p-values is perhaps a novelty here. This idea may be transferred
to other tests, which depend on the use of a given distribution [unction, such as the x2 test. A
related, but more restricted approach, is to use Monte Carlo simulation to estimate the power
and the p-value of any given test statistic (E.L.Lehmann 1997, p.151). Again, by considering the
conditional test, it is possible to arrive at exact p-values for the resulting unconditional test. The
actual calculations can be done with the sufficient conditional Monte Carlo method.

1.3 Conditional Monte Carlo

The most straightforward way of computing a conditional expectation FE%(¢(X)|T = t) would
be to compute for a fixed parameter value 6y. If the distribution of T given 8y dominates the
family of distribution of T, then this gives a reduction to the problem of calculating conditional
expectations in a purely probabilistic setting without parameters.

For this case Trotter & Tukey (1956) introduced the term conditional Monte Carlo (Hammersley
1956, Wendel 1957, Dubi & Horowitz 1979, Granovsky 1981)(Ripley 1987, p.136) (Evans &
Swartz 2000, p.224). The idea is to determine a weight w.(X) and a modified sample X; = x(X, 1)
such that E(¢(X)|7(X) = t) = E{¢(X)w(X)} for any function ¢, where it is assumed that
T = 7(X). This is an important simplification since a conditional expectation is replaced by an
ordinary expectation which is suited for Monte Carlo computation. A given sample x1,...,Tx
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can be used to get weighted conditional samples for all values of ¢. The modified sample fulfills the
condition 7(X;) = ¢, and is obtained through adjustment of an artificially introduced parameter.

The traditional conditional Monte Carlo can be explained in terms of importance sampling
and a change of variables as explained by Dubi & Horowitz (1979), or more directly connected
to the original Trotter-Tukey article in group-theoretic language involving Haar measure and a
homogeneous condition as explained by Wendel (1957). The first approach is more general and
most straightforward and is the survivor in textbooks (Ripley 1987, Evans & Swartz 2000). Both
approaches are rclated to the results here and involves in particular a similar adjustment of a
parameter and an arbitrary distribution for this parameter. The skullduggery related to the
introduction of an arbitrary new measure is most nicely explained by Trotter & Tukey (1956), and
will not be repeated here.

In addition to all of the above ingredients the sufficient conditional Monte Carlo relies on the
additional assumption of sufficiency, and this assumption is fulfilled in many interesting cases.
Sufficiency is indeed the main new ingredient introduced here in relation to conditional Monte
Carlo. This ingredient was also the starting point in the article by Engen & Lillegard (1997),
but their main result is unfortunately not correct (Lindqvist, Taraldsen, Lillegard & Engen 2003).
Lindqvist & Taraldsen (2004) sketch correct arguments based on Bayes theorem which lead to new
versions of the original claims. Here proofs based on measure theory replace these arguments.

1.4 Outline

The plan of the paper is as follows. Section 2 presents three Algorithms for the simulation of
samples from the conditional distribution given the sufficient statistic. Simple examples illustrate
the Algorithms. The suggested methods for computation of conditional expectations are based
on a choice of an arbitrary o-finite measure on the parameter space. This leads to the need for
extending the definition of conditional expectation to the case of o-finite measures, and this is
done in Section 3. This material could be of independent interest in a Bayesian setting. Section 4
contains statements and prools of the main theoretical results. Section b relies on the presented
Algorithms for the analysis of a pressure vesscl example involving the gamma distribution.

2 Sufficient conditional Monte Carlo

The intended purpose of this Section is to present simplified versions of the main results in a
form which is well suited for the implementation of the methods for practical calculations. The
simulation methods are presented in the form of algorithms adapting the format used by Ripley
(1987, Chapter 3). A statistic is in particular a function of the parameter § and a statistic U with
a known distribution. Throughout this Section the statistic T = 7(U, 8) is assumed to be sufficient
for the parameter 8 compared to the statistic X = x(U, 8). Precise assumptions and results are
presented in Section 4.

The most convenient case for simulation is when Algorithm 1 can be used. A sufficient and
necessary condition for Algorithm 1 to give samples X; from the conditional distribution of X
given T =t is that X; is independent of T as explained in Theorem 1 in Section 4. This can in
principle be tested in each case by simulation, but is not a recommended approach. Theorem 1 give
sufficient and necessary conditions related to the Basu theorem (Basu 1955, Basu 1958, Lehmann
& Casella 1998). It was claimed by Engen & Lillegard (1997, p.237) that sufficiency and a
unique solution for € of the equation 7(U,6) = ¢ implies that Algorithm 1 gives samples from
the conditional distribution. Unfortunately this is wrong as shown by an example by Lindqvist
et al. (2003).
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ALGORITHM 1
Let X = x(U,0) and T = (U, 6).

1. Generate U.

2. Solve 7(U,8) = t for 6. The solution is (U, t).

3. Return X, = x{U,6(U,t)}.

Theorem 2 proves that a sufficient additional assumption is given by a certain pivotal structure.
The basic condition is that 7(u,8) depends on u only through a function r(u), where the value
of 7(u) can be uniquely recovered from the equation 7(u,8) = ¢ for given 6 and ¢. This means
that there is a function ¥ such that 7(u,8) = 7(r(u), 8) for all (u, ), and a function ¥ such that
7(r(u),0) = t implies r(u) = 9(6,t). In this case ©(6,T) is a pivotal quantity in the classical
meaning, and is moreover invertible according to the definition by Tukey (1957). The basic idea of
the proof is that both 7(u,8) and 6(u,t) are in one-to-one correspondence with r(u) as explained
in Lindqvist & Taraldsen (2004). This is stated and proved more precisely in Section 4. Here this
will be explained by a familiar example. The point is mainly to illustrate Algorithm 1 and the
conditions of Theorem 1 and Theorem 2.

Example 1 (Uniform distribution) Let Y7,...,Y, be independent samples from the uniform
distribution on (0,6). The statistic T = max; Y; is complete and sufficient for the parameter
compared to the statistic X = Y;.

Let Uy, ..., U, be independent samples from the uniform distribution on (0, 1). For the purpose
here it may be assumed that X = 68Uy and T = 6 max; U;.

~

With notation as in Algorithm 1 this gives x(u,8) = 6wy, 7(u,0) = Omax;u;, 0(u,t) =
t/(max; u;), and

Ui

X, =x{U,6(U, 1)} = tmaxi 7,

(1)

The statistic T is sufficient for # compared to the ancillary statistic X; = tY]/ max; Y; as required
in Theorem 1. The statistic X; has then the conditional distribution of X given T =¢.

The pivotal condition is also satisfied in this case with »(U) = max; U;. The pivotal quantity
is given by 9(6,T) = T/6. Since 6 is a scale parameter for T it follows also directly that 7/8
is pivotal. Statistical inference regarding 6 can be based on the pivotal quantity (Casella &
Berger 1990, p.405).

O

A more common case is that there is a unique solution é(U, t), but the remaining conditions
of Theorem 1 are not satisfied. Algorithm 2 is applicable for this case. Algorithm 2 is similar
to Algorithm 1, but sampling from the distribution of U is replaced by weighted sampling in the
spirit of Trotter & Tukey (1956), where in both cases the weight depends on the choice of the
distribution of the variable ©. If 7(u, ) = t is uniquely solvable for 8, then X; given by Algorithm 2
is a sample from the conditional distribution of X given T =t. A more precise statement is found
in Theorem 4. Algorithm 2 is also a consequence of equation (9) of Lindqvist & Taraldsen (2004).

In many cases it is not necessary to actually sample V as described in Algorithm 2. If, as in the
numecrical example in Section 5, the problem is to compute many conditional expectation for a fixed
condition T" = ¢, then this can be done with a weighted sample: The pair {x{U, (U, )}, w(U)} is
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ALGORITHM 2
Let X = x(U,0), T =7(U,6), and let t — wi(u) be the density of 7(u, ®).

1. Generate V from a density proportional to w, times the density of U.
2. Solve 7(V,8) = t for 8. The solution is 6(V, t).

3. Return X, = x(V, 8(V, 1)).

a weighted sample from the conditional distribution in the terminology of Trotter & Tukey (1956).
Algorithm 2 is illustrated by the example given in Section 5

The calculation of an expectation with respect to a weight function is a thoroughly studied
problem, and many improved mcthods exist (Ripley 1987, Evans & Swartz 2000). Samples from
the conditional distribution may be obtained by rejection sampling provided an envelope for the
function wy(u) times the density of U is available. Alternatively, one may find it more convenient
to use the ratio of uniforms method (Ripley 1987), Markov Chain Monte Carlo methods (Tierney
1994) or the SIR-algorithm of Rubin (Tanner 1996).

The general suflicient conditional Monte Carlo method is given by Algorithm 3 and includes
cases where the assumption of a unique solution 6(U,¢) is dropped. A more precise statement

ALGORITHM 3
Let X =x(U,0), T =7(U,0), and let t — w;(u) be the density of 7(u, ©).

1. Generate V from a density proportional to w; times the density of U.

2. Generate ©, from the conditional distribution of © given 7(v,©) = ¢, where
V = from the above.

3. Return X, = x(V, ©,).

of conditions that imply that X; has the conditional distribution is found in Theorem 4. Gen-
erally speaking Step 2 is comparable with the initial conditional problem, but the two preceding
Algorithms should have convinced the reader that this switch from U to © sometimes leads to
simplifications. An example with scveral roots demonstrates this further.

Example 2 (Non-unique solution for 6) Let

o 2! ifo<z<a
f(2,0) =9 7w (x—a)?! fa<z<a+b (2)
0 otherwise
where a,b > 0 are given constants. If X,..., X,, are independent samples from this distribution,
then
T=> logX;+ Y log(X;—a) (3)
Xi<a X;>a

is sufficient for the parameter 6 compared to X = (X1,..., Xp).

For given values of § the statistic X can be simulated from the density f(z,6) by ordinary
inversion. This gives

{U;(a® +b%)}1/¢ if U; < a?/(a? + %)

4
(Ui(a® + %) — a0 +a ifU; > a?/(a® +1%) @)

X, =x;(U.6)= {
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where Uy, ..., U, are independent samples from the uniform distribution on (0, 1).

Now consider the equation 7(u,8) = ¢. This equation has a finite but varying number of
solutions for 6, depending on the valucs of w and ¢. Let I'(u,t) = {8|7(u,8) = t}. As an
illustration, when n = 2,a = 3,b = 1 and u = (0.5,0.9), there are two solutions for 8 if ¢ < 0.2,
one solution if ¢ > 1.9 and no solution if 0.2 < ¢ < 1.9 (approximate values). For example, t =0
gives the solutions 6; = 0.925, 6, = 1.801.

The density ¢ — w,(u) of 7(u, ®) with respect to Lebesgue measure is
_ _90)
vl = D T aer(wd] (5)
€T (u,t)

where ¢ is the density of ©. The conditional distribution of © given 7(u, ®) =t is concentrated
on I'(u,t) and given by the discrete distribution

9(6)
| det 97 (u, 8)|weu)’

9 € I'(u,t) (6)

O

In the preceding example a difficult conditioning on 7(U, 8) was effectively replaced by a more
tractable conditioning on 7(u, ©). It is more tractable since the conditional distribution of ©
is discrete. For discrete distributions the solution set I'(w,t) = {8|7(u,0) = t} is typically a
continuum, and Algorithm 3 may prove useful also in this case. Depending on the problem, other
kinds of simplifications may be possible.

3 Conditional expectations for o-finite measures

The suggested method for computation of conditional expectations is based on a choice of a o-finite
measure on the parameter space. This leads to the need for extending the definition of conditional
expectation to the case of o-finite measures, and corresponds to the use of improper priors in
Bayesian analysis (Jeffreys 1946, Schervish 1995, Berger 1985). Two traditional alternative ways
to make the concept of improper priors mathematically precise is given by: (i) Allowing infinite
probability measures (Hartigan 1983). (ii) Allowing finitely additive probability measures (Heath
& Sudderth 1989). The approach here is a special case of alternative (i). It is surprising that a
presentation of the following basic definitions and results in the literature is difficult to find. The
present section provides this foundation briefly, and is an extension of the corresponding theory
for finite measures presented by Halmos & Savage (1949).

U T:X — ) is ameasurable function and ;s is a measure on X, then the distribution ppr of T
is the measure on ) defined by pr(A):=u(T € A). The notation (T € A):={z|T(z) € A} is used
as an alternative to the more standard notation T-!(A). The set of locally u-integrable functions
L1 joc(t) is defined as the equivalence class of functions X : X — R which are p-integrable on sets
with finite y~-measure. Tn the following other standard concepts from measure theory (Rudin 1987)
and probability and statistics (Schervish 1995) will be used without further comments.

Definition 1 Let T : X — Y be a measurable function. Let 1 be a measure on X and assume
that pr is o-finite. The conditional czpectation (X |T =1t) of a locally p-integrable function X
18 a measurable function of t such that

W(XG(T) = [ (X |T = 0g(8) ur(ct) ™

for oll indicator functions g € L1 joc(pir)-
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The measure determined by g — u(Xg(T)) is absolutely continuous with respect to ur, and
the Radon-Nikodym theorem ensures existence and uniqueness of the conditional expectation
identified as the density with respect to pr. The conditional expectation u(X|T = t) defined in
this way is determined as an clement of Ly joc(pr). The different functions p(X|T = t) satisfying
(7) are called versions of the conditional expectations.

The assumption of o-finite distribution for 7" ensures that the family of indicator functions
of sets with finite pp-measure is non-trivial and furthermore makes the Radon-Nikodym theorem
available (Rudin 1987, p.121-124). The assumption means in particular that 7' cannot be a
constant unless the measure y is finite. Equation (7) could be used as a definition in this special
case where p(X) = oo also, but the resulting conditional expectation would then be a completely
arbitrary measurable function since g = 0 is the only available indicator function in Lq jc(pr). In
the converse direction it can be observed that o-finiteness of u follows from the o-finiteness of pr.

The modern definition of conditional expectation p(X | F) (Schervish 1995, p.616, B.23) with
respect to a o-field F in X may be defined in a similar manner by the replacement of the above
g(t)’s with indicator functions for the sets in F, replacing pr with j, and the demand that
#(X | F) is measurable with respect to F. Existence of the conditional expectation follows from
the Radon-Nikodym theorem in this case also. With additional assumptions the two definitions
of the conditional expectation are connccted by consideration of the o-field F generated by T
(Schervish 1995, p.616, B.24). Tn the context here it is convenient to follow Halmos & Savage
(1949) and take Definition 1 as the starting point.

The existence and uniqueness of the conditional expectation in Definition 1 can be interpreted
as a form of Bayes thcorem. In a Bayesian setting a model is often formulated in terms of a prior
distribution for a parameter ® and a conditional distribution for the observation X given 6. This
gives the joint distribution u(x ey of (X,©). If the observation X has a o-finite distribution jx
in the model, then Definition 1 gives the conditional expectation of ¢(0) € L1 15c(1t) given X =z
on which Bayesian inference can be based.

A salient feature of the conditional expectation is that it is normalized even when the initial
distribution has infinite mass.

Proposition 1 Let T : X — Y be a measurable function and let ;i be a measure on X. If the
distribution pr is o-finite, then
p(1|T=t)=1 (8)

Proof. I g is the indicator function of A with ur(A) < oo, then

w(1g(T)) = / o(T(2)) p(dz) = plz | T(x) € A} = pr(A) = / 1g(t) () (9)

which proves the claim. O

Proposition 1 is a generalization of the same observation for finite measures (Halmos &
Savage 1949, p.230). Hartigan (1983, p.24-30) allows infinite conditional probabilities, but in
the statement of Bayes theorem a o-finiteness condition is used and the resulting conditional
probability is normalized.

Many results from the theory of conditional expectation generalize verbatim to the more general
case of o-finite measures. Threc results are essential in the following and are listed in the following
proposition.

Proposition 2 Let T : X — Y be a measurable function. Let i be a measure on X and assume
that pp is o-finite. Let X € Ly joc(p).
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If h is one-to-one and measurable, then

wX|T =t) = p(X[P(T) = h(t)) (10)

If X is a Borel space, then there exist a reqular conditional distribution u(-|T = t). Further-
more, if f: 2 x Y — R is measurable and f(Z,T) € L1 j0.(1t), then

W ZT)T =1) = / F(2(). ) (] T = 1) (11)

Proof. The first claim is left to the reader. The existence of a regular conditional distribution
follows from the proof given by Schervish (1995, p.618). The last claim follows from the proof of
a corresponding result of Bahadur & Bickel (1968). O

The class of Borel spaces is large and includes in particular every complete separable metric
space. A regular conditional distribution A — p(A|T = t) is a measure on X for each ¢+ where
w(14|T =t) = p(A|T = t). The right hand side of (11) can be considered to define a version of
w(f(Z,6)|T =1t), so (11) can be viewed as a result on substitution in conditional expectations.

4 Sufficiency and Monte Carlo conditioning

Let {P?} be a family of o-finite measures on the measurable space Q. The corresponding linear
functionals are in this case denoted by E?. A statistic T is a measurable function from € into
a measurable space 7. The statistic T is ancillary if its distribution does not depend on §:
P = Pr.

An alternative definition for a statistic will also be allowed here. Let P be a o-finite distribution
on the measurable space Q. An ancillary statistic U is a measurable function from © into a
measurable space Q. A statistic T = 7(U, 6) is specilied by a measurable function 7 and an
ancillary statistic U. It follows that if the distribution P% docs not depend on 6 then T can be
identified with an ancillary statistic.

In the first definition the measurable space Q and the family of measures {P?} is fixed, and
every statistic is based on this underlying structure. In the alternative definition the measure
space (92, P) is fixed, and every statistic is based on this underlying structure. In both cases the
result is a family of distributions { P2} for each statistic 7. The alternative definition is convenient
in the context here since it has as a consequence that the family of distributions is measurable:
6 — PL(A) = E(r(U,0) € A) is measurable. This claim follows from the Fubini theorem since P
is o-finite (Rudin 1987, p.164).

The following two results also show a technical advantage of the alternative definition of a
statistic. The first result is a generalization of the Radon-Nikodym theorem to measurable families
of measures.

Proposition 3 Let 7w(df) be a o-finite measure. If {1?} is a measurable family of measures dom-
inated by a o-finite measure vy, then there exists a measurable f such that v?(dx) = f(x,8) v(dx)
for almost all 8. More generally, if v% < p? for almost all 8, where {u?} is a measurable family
of o-finite measures, then there exist a measurable f such that v?(dzx) = f(x,8) u?(dx) for almost
all 6.

Proof. Define the measure v by

/ h(z, 8) v(dz, d8) = / h(z, 8) 1 (dz)(d6) (12)
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and likewise for ;. The Radon-Nikodym theorem and v < ;i gives a measurable f such that
v{de,df) = f(z,0) u(dx,df). Substitution of functions on the form h(z)g(#) in (12) shows that
VW (dx) = f(z,0) p?(dx) holds for almost all @ with respect to . 0

The following result ensures joint measurability of a conditional expectation as a function of
the parameter and the statistic it is conditioned on.

Proposition 4 Let X = x(U,0) and T = 7(U,0) be statistics with measurable x, 7 and an
ancillary statistic U. Let w(df) be a o-finite measure. Assume that P;i is o-finite for almost all
8, and that X € Ly 1,.(P) for almost all 6. Then, for almost all 8, there exists a version of the
conditonal czpectation E°(X | T =t) such that (6,t) — E°(X |T =t) is measurable.

Proof. Define the measure v? by v9(g) = E(Xg(T)). The conditional expectation E?(X |T = t)
is the density of v¥ with respect to PY and Proposition 3 gives the claim. m|

It can be remarked that in a Bayesian setting, where P’(dz|T =t) = P(dx|T =t,0 = §),
the previous joint measurability is automatically fulfilled.

Halmos & Savage (1949) introduced the concept of dominated families of measures in their
proof of the factorization theorem for sufficient statistics. The following result is needed below.

Proposition 5 A dominated family of o-finite measures has an equivalent countable subfamily,
and there exists a o-finite measure equivalent to the family.

Proof. This follows from the results of Halmos & Savage (1949, p.232-233) since a o-finite measure
is equivalent to a finite measure. O

The concept of sufficiency is one of the cornerstones of statistics. Halmos & Savage (1949,
p.239-241) give a good explanation for what a sufficient statistic is sufficient for doing. This
explanation is relevant also for the definition given here. There exist several deflinitions, and the
following is convenient for the purposes here.

Definition 2 A statistic T is sufficient for a parameter 8 compared to a statistic X if to cach
f €Ny Liioc(PY) there exists a measurable g such that E°(f(X)|T =t) = g(t) for all 6.

This means that ¢ is a version of the conditional expectation for each 6, and the notation
E(f(X)|T =t) = g(t) denotes this particular version of the conditional expectation. Definition 2
is similar to the general sufficiency concept of Blackwell (1953), and includes the more standard
concept where it is assumed in addition that T is a function of X (Halmos & Savage 1949)
(E.L.Lehmann 1997, p.19) (Schervish 1995, p.84). If Q2 is a Borel space, then T is sufficient for a
parameter 8 compared to X if the regular conditional distribution of X given T does not depend
on 6. The weaker concept of pairwise sufficiency (Halmos & Savage 1949) can be generalized in a
similar manner.

The Basu theorem (Basu 1955, Basu 1958, Lehmann & Casella 1998), including its proof, holds
also with the definition of a statistic given above. The statement and proof is included here since
the result will be shown to be closely linked to Algorithm 1.

Proposition 6 IfT is a complete sufficient statistic for the parameter 8 compared to an ancillary
statistic A, then T and A are independent.

Proof. Let ¢ be bounded and mecasurable. From sufficiency compared to A define #(t) =
E%($(A)| T = t). It will be proven that ¢(t) = E’¢(A). The calculation E’¢(A) = E°{E%(¢(A) | T)} =
E%{y(T)} gives E?{y(T) — E°¢(A)} for all §. Completeness gives the claim ¢ (t) = E’$(A), since
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W(T) — E?$(A) is a function of T only. This holds for the first term due to sufficiency and for the
last term since A is ancillary. a

As in the conventional setting with normalized distributions a complete sufficient statistic
also gives the uniformly minimum variance unbiased estimator by conditioning of an unbiased
estimator. The proof is unchanged and is not repeated here.

The next result corresponds to Algorithm 1 in the case of a complete sufficient statistic. The
Theorem gives sufficient and necessary conditions such that the resulting X, is distributed like X
given T' = t. This result seems to be new and is in particular not contained in the related paper
by Lindqvist & Taraldsen (2004).

Theorem 1 Assume T = 7(U, 0) to be a complete sufficient statistic for the parameter 6 compared
to X = x(U,0) with measurable x, 7 and an ancillary statistic U where Q is a Borel space.

Assume there is a unique solution 0(u,t) of the cquation 7(u,0) =t for each pair (u,t).

The variable X, = x(U,0(U, 1)) is distributed like X given T =t if and only if T is a sufficient
statistic for the parameter 8 compared to X;.

Proof. Let ¢ be bounded and measurable. The identity X = ¥[U, 8{U, 7(U, 6)}] and equation (11)
in Proposition 2 gives
E(@(X)|T=1t)=FE'(¢(X)| T =1) (13)

since 7 is a Borel space.

Assume first that T is a sufficient statistic compared to X, for the parameter 8. Proposition 6
gives independence of X; and T, so E%(¢(X;)|T) = E’{¢(X;)}. The conditioning on the right
hand side of equation (13) can hence be removed and X, has the conditional distribution.

Assume next that the variable X, = x(U,8(U,t)) is distributed like X given T = t. Equa-
tion (13) gives independence of X, and 7. It must be proven that E?(¢(X,)|T = s) = 4(s)
with no dependence on 6. The independence gives a trivial s dependence, and the distribution
assumption gives E(¢(X;) |T = s) = E(¢(X) |T = t) which proves sufficiency. O

The next result also corresponds to Algorithm 1, but in this case completeness is not assumed.
The conditions are more constructive and imply that the resulting X; is distributed like X given
T = t. The Theorem corresponds to the pivotal case as explained by Lindqvist & Taraldsen
(2004).

Theorem 2 Assume T = 7(U,8) to be a sufficient statistic for the parameter 8 compared to
X = x(U, 8) with measurable x, 7 and an ancillary statistic U where Qyy is a Borel space. Assume
i addition that the three following conditions are satisfied.

e Unique solution: There is a unique solution 0(u,t) of the cquation 7(u,0) =t for each
pair (u,t).

e The pivotal condition: There exist measurable functions r and 7 with 7(u,8) = 7(r(u), 9),
and such that there is a unique solution ©(0,t) of the equation 7(v,0) =t for each pair (0,1).

¢ Dominating measures: There exist two o-finite measures v,y which dominate respectively

the family of distribution of 7(U,0) and the family of distribution of 6(U, ).

The variable 5(6,T) is pivotal. For v-almost all t the variable X, = x (U, 0(U, t)) is independent
of {r(U),0(U,t)} and X, is distributed like X given T = t.
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Proof. The variable 9(6,T) = 9(6,7(U, 6)) = r(U) is pivotal. Because of Proposition 5 it can be
assumed that v and 7 are equivalent to the families they dominate. Let ¥{t) = E(¢(X)|T =1t)
where ¢ is bounded and measurable. From the pivotal assumption there is a one-to-one and
mcasurable correspondence between r(U) and 7(r(U), 8) for cach 6. Proposition 2 gives

$(t) = E(¢(X) | 7(r(U),0) = t) = E{s(X) |r(U) = 0(6,1)} (14)

for all # and all t € A where v(A°) = 0. Proposition 4 gives joint measurability of the right hand
side with respect to (6,t). The assumptions give that 6(u,t) depends on u only through r(u), so
let 8(u,t) = 8(r(u),t). Consider the calculation

E{¢(X) |r(U) = 5(6,1)} = E(¢(X) | 0(r(U), 1) = 6) = E(&(X;) | 0(U, 1) = 6) (15)

which holds for all ¢t and all § € B where 4(B°¢) = 0. The first equality follows since for fixed
t, 6(r(U), ) is a one-to-one and measurable function of (). The second equality follows from
0(u,t) = 6(r(u), t) and substitution which is allowed since Qs is a Borel space. Equation (14) and
equation (15) combine to give

W(t) = E((X0)|0(U, 1) = 0) = E{¢(X:)} (16)

where the first equality holds for (¢,6) € A x B, and the second equality holds since there is no
dependence on € in 7. This proves thatX; has the conditional distribution.

The independence result also follows from equation (16) and the given one-one correspondence
between 6(U,t) and r(U). m

The variable #(0,T) is a pivotal quantity in the classical meaning, and is moreover invertible
according to the definition by Tukey (1957).

The assumptions in Theorem 2 are fulfilled in many interesting and important cases, including
in particular the multinormal (Lindqvist & Taraldsen 2004). The following result is essential for
the derivation of similar results under more rclaxed conditions. It is a more precise and general
version of equation (2) derived by Lindqvist & Taraldsen (2004).

Theorem 3 Assume T = 7(U,68) to be a sufficient statistic for the parameter 8 compared to
X = x(U,8) with measurable x, 7 and an ancillary statistic U. Let yn = Py @ w, where 7 is a o-
finite distribution on the set of parameters such that the family of distributions {P4%} is dominated
by tor. If & € L1 joc(pey) and pr is o-finite, then p(¢(x) |7 =1t) is a version of E(¢(X)|T =1t)

Proof. Let yn(t) =
proving ({yn(r) # ¥
E(¢{x(U,0)} (U, 0)

follows from

(
7)} = 0. Recall that by sufficiency E{(¢(X)|T = t) is a version of

E@X)|T = t) and 92(t) = pld(x)|7 = t). The claim follows by
o
= t) for all 8. Let g € L1 1oc(ptr) be an indicator function. The claim

ig(Pa(r)} = ulg(r)d(x)} = / Elg{r(U, 8)}é{x(U, 6)}] m(d6)

(17
— [ Elo{r(U,6)6:r(U.6)}] m(d8) = {g(r)un (7))

O

The point of the domination assumption is most easily illustrated by an example where X =
(X1,...,X,) is a vector of n independent variables uniformly distributed on (0,6), with 6 > 0.
Then T = max X; is sufficient compared to X. Now for a fixed valuec 6y the support of T is
[0,80]. Thus conditional expectations of functions ¢(X) given T' = t under P% can be assigned
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an arbitrary value for t > 6y. The conditional expectation p[¢(x) |7 = t] with m = §p, can not be
used as representative for E[¢(X)|T = t] in this case.

The next theorem gives the precise version of Algorithm 3, of which Algorithm 2 is a special
case. Sufficient conditions are sufficiency as in Theorem 3 and existence of a distribution = for
© such that the distributions of both 7(u,®) and 7(U,6) are dominated by the distribution of
7(U,8). The next Theorem gives assumptions that are slightly more general.

Theorem 4 Assume T = 7(U,60) to be a sufficient statistic for the parameter 8 compared to
X = x(U,0) with measurable x, T and an ancillary statistic U. Let y = Py @ w, where « is
a o-finite distribution such that p. is o-finite and such that the family of distributions {P2} is
dominated by ju.. Define ©(8) = 6. Assume that the family of distribution of 7(u,®) for almost
all u is dominated by o o-finite measure v. Let t — w(u) be the density of 7(u, ®) with respect
to v. Let z(u) = m(¢(x(u, ©)) | 7(u,©) =t) where ¢ € Ly joc(pty). The functions wi(u) and 2 (u)

can then be chosen jointly measurable in (u,t), and

E(w(U)z(U))

E@IT == =F ()

(18)

Proof. The joint measurability of w;(u) and z,(u) follows from Proposition 3 and Proposition 4.
A short calculation gives

11 (dt) = { Bw,(U)}w(dt) (19)

Let g € L1 1oc(pt-) be an indicator function. The definition of z,(u) as a conditional expectation
and the definition of w,(u) as a density give

/ o{x(, 8)}g{r(u, 6)} w(d6) = / cu(w)g(tywy () (dt) (20)

Integrating both sides of (20) with respect to Py and using Fubini’s theorem give

uls00a(r)} = [ FUR D ) (ot (21)

Equation (21) and Theorem 3 prove that (18) holds. m

From the prool it follows that the assumed existence of a dominating v is equivalent with the
assumption that the distribution of 7(u, ©) is dominated by the distribution of 7 for almost all .
The measure v can then be taken to be p-. Tn this case Ew:(U) = 1s0 E(¢(X) |T =t) = E(w;z:).
Note also that 0 < Fw,(U) < oo for almost all ¢, because of (19) and the assumption of 11, beeing
o—finite.

The next result applies typically to cases where T has a discrete distribution for all 8. The
proposition is a corollary of Theorem 3, but an elementary direct proof is given here. The result
is essentially the main result of Engen & Lillegard (1997), but the presented proof is different.
Theorem 5 Assume T = 7(U,8) to be a sufficient statistic for the parameter 6 compared to

X = x(U, ) with measurable x, T and an ancillary statistic U. Let © be a o-finite measure, let ¢
be bounded and measurable and define

w) = [ 0w 0) o) = (@), win)= [ =dr@) @)
Then for all t with 0 < E(w,(U)) < 00

(23)
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Proof. The composed function ¢(y) is not more general than x alone, so in the proof it may be
assumed that ¢(x) = z. By considering only 6’s such that P?(T =t) > 0 it follows that

EX[T=1)) _ [E(XI[T = t])7(do)

EXIT=0="p50 =0 = 75T = t)n(a0)

(24)

The above integration is valid since the sufficiency gives that the fraction is independent of 8.
The conclusion follows from the Fubini theorem which allows us to change the order of integration
since Py and 7 are o-finite. O

In some cases, there is a function Z:(u) such that x(u,8) = Z.(u) for all 6 solving 7(u,0) = ¢
(Engen & Lillegard 1997). This is more general than the assumptions defining X; previously. In
this more general case the y,(U) of Theorem 5 factors as y,(U) = ¢(%,(U))w,(U). Moreover, if
Z(U) and wy(U) are independent, then Z,(U) is distributed like the conditional distribution of
X given T = t. A similar argument holds for Theorem 4 and gives a slight generalization of
Algorithm 2.

5 A failure time example

Consider the following failure times (in hours)

274 285 1.7 208 871 363 1311 1661 236 828 (25)
458 290 549 175 1787 970 0.75 1278 776 126

of n = 20 similarly constructed pressure vessels subjected to constant pressure (Keating, Glaser &
Ketchum 1990, Wong 1992, Welsh 1996). The sample empirical mean and variance are respectively
Z = 575.53 and s = 3.3021-10°. It will be assumed that the failure times are independent samples
from the gamma density

fx(z) = {8°T(a)} "t 2% Le™*/# shape a > 0,scale 8> 0 (26)

With this assumption X is the best unbiased estimator for the mean u = EX; = of, and it
coincides with the maximum likelihood estimator. The empirical variance S? is however not an
optimal estimator for the variance 02 = Var X; = a2, but the best unhiased estimator is obtained
by conditioning on a sufficient statistics. The actual calculation of this best unbiased estimator
is not quite straightforward, and the authors have not been able to find references where this
calculation is done neither numerically nor analytically. The method of sufficient conditional
Monte Carlo permits a direct calculation which is also valid for small samples. In the following
the best unbiased estimator for the variance will be calculated, and compared with the maximum
likelihood estimator.

5.1 Estimation

The maximum-likelihood estimates of shape and scale are well known (Welsh 1996, p.190), and
leads to the estimate 62 = 7% /& of the variance, where & solves w:=7/% = 471 -exp (&), 7 is the
geometrical mean, and ¥ (a) = 8, logl'() is the digamma function. It should be observed that
the maximum likelihood estimator of the shape parameter is in a one-one correspondence with
the statistic W := X /X. The exact distribution of W is known, and the distribution is sometimes
referred to as the Bartlett distribution (Keating et al. 1990). In the following W will be referred to
as the Bartlett statistic. For the given pressure vessel data w = /% = 0.3422 and 62 = 5.719-10°,
which is somewhat different from the empirical variance. For later reference note also the estimates
& =0.5792 and 3 = 993.7.
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Next, consider the calculation by the sufficient conditional Monte Carlo method. The statistic
(X,X) is complete and sufficient. This is then also true for the statistic T = (X, X/X), which
has better properties in some respects. The Bartlett statistic X /X has no 3 dependence, and is
hence ancillary with respect to 3. The Basu theorem gives independence of {X, X /X}, since X
is complete and sufficient for 3. The range of the statistic T is hence (0,00) x (0, 1).

The best unbiased estimate of the variance is given by 62 = E(5%|X = z,X/X = i/%).
A change of scale argument gives the decomposition 62 = #2/&,,, where 1/4, = E(5*|X =
1,X/X = #/%). This estimator has the same dependence on Z as the maximum-likclihood es-
timator, but &, depends on the sample size n in addition to the dependence on #/Z, and is
hence more complicated than &. The aim here is to estimate the variance, but it can be noted
that natural estimates of shape and scale follow from the one-one correspondence with (u,o).
In this context it can be remarked further that from unbiasedness and the above independence

E(1/an(W)) =1/(a +1/n).

Let x;(u,6) = BF~!(u;; o), where F is the CDF of the gamma distribution with scale 3 = 1,
and 6 = («, ). Define further 71 = ¥, and o = x/%. If Uy,...,U, ~ U(0,1) are independent,
then the inversion method gives (x(U,9),7(U,8)) ~ (X, T). This is then a model of the sufficient
conditional Monte Carlo type. Define the function 8(u,t) as the solution of 7(u, 8) = t. This is two
real equations with two real unknowns, but the components are given by the solution of the single
equation ¥(u,d)/x(u,d) = to, and 5 = t1/%(u, ). Here the convention x(u,a,1) = x(u,q) is
used. From this x;(u,t):= Xi(u,é(u,t)) = t1xi(u, @(u, t2))/x(u, &(u, t2)). The density of 7(u, ©)
is given by w(t, u) = fod 5)/[¢(t, &)0(1/) lo_)

The authors have not been able to prove that o — X/ is strictly increasing. The conclusion
in the general case is the representation

EY er 5 /X — 12 fo/[x0a(X/X)]
EY e fo/[X0a(X/X)] ’

where I' = T'(U, t2) = {a|x(U,«)/x(U,«) = t2}. The simple indicator choice fo(«, ) = [a >
Qmin| 18 one way to avoid numerical problems for small a. The value @min = 0.01 is used in the
simulations, and the result is that in some rare cases this gives I' = (3, but not so frequently that

this caused any problems. A possible improvement is to multiply this with the Jeffreys’ prior
Vo' (o) —1/8, and in the simulations this seemed to give an improvement.

1/én, = (27)

Numerical routines in S-Plus, MATLAB with the Statistics tool-box, and Fortran 95 with
the IMSL library have been implemented in order to evaluate the integrands in the two n = 20
dimensional integrals in equation (27). One reason for the implementation on threc independent
platforms was initial numerical problems with the function x(u,«) for small &. Tn MATT.AB the
function gaminv() gives erroneous answers, and in the IMSL library the corresponding gamin()
function sometimes returns without convergence. The solution was a modification of the MAT-
LAB [unction, and a corresponding implementation in Fortran. The end result was three indepen-
dent implementations, and it is reassuring that they produce consistent answers. The underlying
pseudo-random generators are also different on the three platforms.

The integrals are approximated by the mean values of the integrands evaluated at (1), ..., u(m)
obtained from the pseudo-random generator. Numerical experiments indicate that two digit ac-
curacy is obtained with m = 10000, and thc estimate is then 63, = 5.5e5. This is quite close to
the maximum likelihood estimate, and indicates that n = 20 is a “large sample” for this specific
case, and hence that the maximum likelihood estimator is close to optimal.

It is not clear from the previous whether the UMVU estimate 63 is an improvement rela-
tively to thc MLE estimate 62. It is not the purpose here to scttle this question, but to get an
indication simulations with m = 100000 Monte Carlo samples of size n = 20 from the MATLAB
pseudo-random generator gamrnd() with o = 0.6 and 8 = 1000 have been carried out. For each
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Table 1: Empirical mean and relative root-mean-square error of estimates of the variance in a
Gamma(0.6,1000) distribution from 100000 pseudo-random samples of size 20 and 3. The exact
variance is 6e5.

Estimator Sample size | Mean | Relative root-mean-square error
Empirical variance 20 | 5.99e5 77.7%
Maximum likelihood 20 | 6.21e5 69.3%
Algorithm 2 (UMVU) 20 | 5.99e5 65.5%
Algorithm 1 20 | 6.02e5 65.9%
Empirical variance 3 | 5.99e5 208%
Maximum likelihood 3 | 6.53eb 269%
Algorithm 2 (UMVU) 3 | 6.00e5 200%
Algorithm 1 3 | 6.06e5 197%

Monte Carlo sample the MILE estimate, the empirical variance, and estimates corresponding to
Algorithm 1-2 have been computed. The empirical mean and empirical relative root-mean-square
error of the estimators indicate that 63, is to be preferred, but it is hardly distinguishable from
the result of Algorithm 1. The MLE estimator is biased and tends to give a too large answer,
which is comparable with the pressure vesscl estimates.

The extreme small sample case n = 3 has also been considered, and then the MLE is clearly
not a good choice. More surprising is perhaps the relatively good result for the empirical variance:
It is superior to the MLE estimator, and almost as good as the UMVU estimator. The reason
is most likely that the reduction of the data through the sufficient statistic is only from 3 to 2
numbers in this case. The estimator from Algorithm 1 seems to be biased, and indicates that X,
from Algorithm 1 does not have the conditional distribution of X given T = ¢ in this case. In
terms of root-mean-square error the estimator from Algorithm 1 is slightly better than the UMVU
estimator from Algorithm 2 in this case.

The results are summarized in Table 1. Tn order to do these simulations the estimators have
been sampled at several w values, and afterwards interpolation have been used to evaluate the
estimators. The corresponding estimators of the shape are shown in Figure 1.

5.2 Goodness of fit

In previous studies of the present pressure vessel data set the authors have considered goodness
of fit tests for testing exponentiality & = 1 against the gamma alternative with o < 1 (Keating
et al. 1990, Wong 1992, Welsh 1996). A particular conclusion is rejection of exponentiality at
the 1% level for a test based on W (Keating et al. 1990). It is possible to repeat this with the
uniformly most powerful unbiased test for this case (E.L.Lehmann 1997, p.147), and the actual
calculations may be done with the sufficient conditional Monte Carlo method. A related problem
is considered here: Is the pressure vessel data from a gamma distribution?

A Kolmogorov-Smirnov type test will be used, where the null hypothesis Hy is that the density
f is a gamma density. It is assumed that the data are independent from a common density f. The
most common approach would be to estimate the parameters to obtain a specific distribution which
can be used in a Kolmogorov-Smirnov test. Exact p-values and critical values can be obtained
by simulation. Instead of an estimate of the distribution function through the parameters the
uniformly minimum variance unbiased estimate of the distribution function at the given failure
times will be used. To obtain exact p-values a conditional test given the sufficient statistic for Hy
will be considered. This approach is quite general and it is possible and much simpler to use this
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Figure 1: Maximum-likelihood estimator of shape and the estimator &,, from equation (27) from
samples of size n = 3 and n = 20 from a gamma distribution. The numerical distance between
the two estimators is small for these two sample sizes.

in cases where Algorithm 1 is available, including in particular the exponential and the normal
family. It is definitely of practical importance to consider the power of the resulting tests and
compare it with alternative tests, but this will not be considered here. The purpose here is to
demonstrate how the sufficient conditional Monte Carlo method can be used to calculate an exact
p-value in a nontrivial case.

In order to formulate the test some functions are introduced. They will generally depend on
t = (Z,w), but this dependence will not always be made explicit. The conditional Kolmogorov-

Smirnov distance r = r(z) is a function of © = (x1, ...,y ), and actually a function of the ordered
tuple (1), ..., Z(,)). It is defined by
r(x) = mlaxri(x), ri(x) = max{|Ft(x(l-)) — ’L/TL| , |Ft(x(l-)) —(i— 1)/n|} (28)

where Fy(z) = P(X; < z|T = t). A caleulation of r(z) can be done by n = 20 conditional
expectations as in the previous case of the variance. The conditional probability

plx) = P(r(X) 2 r(x) |T = t(z)) (29)

gives the exact p-value. In this case, as in many similar cases, the p-value has the additional
interpretation as a normalized test statistic. The rejection region {z|p(z) < a} is a precise level
« test, meaning that P(p(X) < «) = « given Hy. Given Hy the statistic p(X) is distributed
uniformly on (0,1).

The actual calculation of the p-value in the example involves a huge number of conditional
expectations. The Kolmogorov-Smirnov distance r(z) is determined by n = 20 conditional expec-
tations. To calculate the conditional expectation in the expression for p(x) the integrand must
be cvaluated many times, for instance m = 10000 times. For cach of these evaluations n = 20
conditional expectations must be calculated in order to calculate »(X).
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The computational cost could seem to be prohibitive, but all of these conditional expectations
are conditioned on T = {. This means that a large weighted sample can be generated from
X |T =1 once, and then this single weighted sample can be used for the calculation of all of the
above conditional expectations. Implementation of this gives the resulting p-value, and in this
case p(x) = 0.43. Numerical experiments indicate that this answer has the indicated two digit
accuracy with m = 10000. The gamma assumption is in particular not rejected at the 1% level.

It is tempting to say that the p-value 0.43 is rather high, but this is only if the p-value is
considered as a measure on how well the gamma distribution fits the data. As mentioned above
the p-value is uniformly distributed on (0,1) given the gamma assumption, and p = 0.43 should
then not be a surprising result.
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